These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 17022418)
1. Use of the oligochaete, Lumbricuilus variegatus, as a prey organism for toxicant exposure of fish through the diet. Mount DR; Highland TL; Mattson VR; Dawson TD; Lott KG; Ingersoll CG Environ Toxicol Chem; 2006 Oct; 25(10):2760-7. PubMed ID: 17022418 [TBL] [Abstract][Full Text] [Related]
2. Interactions of waterborne and dietborne Pb in rainbow trout, Oncorhynchus mykiss: Bioaccumulation, physiological responses, and chronic toxicity. Alsop D; Ng TY; Chowdhury MJ; Wood CM Aquat Toxicol; 2016 Aug; 177():343-54. PubMed ID: 27367828 [TBL] [Abstract][Full Text] [Related]
3. Trophic transfer and dietary toxicity of Cd from the oligochaete to the rainbow trout. Ng TY; Wood CM Aquat Toxicol; 2008 Apr; 87(1):47-59. PubMed ID: 18281109 [TBL] [Abstract][Full Text] [Related]
4. Influence of prey type on nickel and thallium assimilation, subcellular distribution and effects in juvenile fathead minnows (Pimephales promelas). Lapointe D; Gentès S; Ponton DE; Hare L; Couture P Environ Sci Technol; 2009 Nov; 43(22):8665-70. PubMed ID: 20028068 [TBL] [Abstract][Full Text] [Related]
5. Reduced growth of rainbow trout (Oncorhynchus mykiss) fed a live invertebrate diet pre-exposed to metal-contaminated sediments. Hansen JA; Lipton J; Welsh PG; Cacela D; MacConnell B Environ Toxicol Chem; 2004 Aug; 23(8):1902-11. PubMed ID: 15352479 [TBL] [Abstract][Full Text] [Related]
6. Chronic nickel bioaccumulation and sub-cellular fractionation in two freshwater teleosts, the round goby and the rainbow trout, exposed simultaneously to waterborne and dietborne nickel. Leonard EM; Banerjee U; D'Silva JJ; Wood CM Aquat Toxicol; 2014 Sep; 154():141-53. PubMed ID: 24880786 [TBL] [Abstract][Full Text] [Related]
7. The relative importance of waterborne and dietborne As exposure on survival and growth of juvenile fathead minnows. Erickson RJ; Mount DR; Highland TL; Hockett JR; Jenson CT; Lahren TJ Aquat Toxicol; 2019 Jun; 211():18-28. PubMed ID: 30908994 [TBL] [Abstract][Full Text] [Related]
8. Dietary exposure of fathead minnows to the explosives TNT and RDX and to the pesticide DDT using contaminated invertebrates. Houston JG; Lotufo GR Int J Environ Res Public Health; 2005 Aug; 2(2):286-92. PubMed ID: 16705829 [TBL] [Abstract][Full Text] [Related]
9. Trophic transfer of pyrene metabolites and nonextractable fraction from Oligochaete (Lumbriculus variegatus) to juvenile brown trout (Salmo trutta). Carrasco Navarro V; Leppänen MT; Honkanen JO; Kukkonen JV Chemosphere; 2012 Jun; 88(1):55-61. PubMed ID: 22475154 [TBL] [Abstract][Full Text] [Related]
10. Toxicity of Wildland Fire-Fighting Chemicals in Pulsed Exposures to Rainbow Trout and Fathead Minnows. Puglis HJ; Iacchetta M; Mackey CM Environ Toxicol Chem; 2022 Jul; 41(7):1711-1720. PubMed ID: 35452533 [TBL] [Abstract][Full Text] [Related]
11. The influence of food quantity on metal bioaccumulation and reproduction in fathead minnows (Pimephales promelas) during chronic exposures to a metal mine effluent. Ouellet JD; Dubé MG; Niyogi S Ecotoxicol Environ Saf; 2013 May; 91():188-97. PubMed ID: 23453348 [TBL] [Abstract][Full Text] [Related]
12. Food selection, growth and physiology in relation to dietary sodium chloride content in rainbow trout (Oncorhynchus mykiss) under chronic waterborne Cu exposure. Niyogi S; Kamunde CN; Wood CM Aquat Toxicol; 2006 May; 77(2):210-21. PubMed ID: 16434110 [TBL] [Abstract][Full Text] [Related]
13. A bioavailability model predicting the toxicity of nickel to rainbow trout (Oncorhynchus mykiss) and fathead minnow (Pimephales promelas) in synthetic and natural waters. Deleebeeck NM; De Schamphelaere KA; Janssen CR Ecotoxicol Environ Saf; 2007 May; 67(1):1-13. PubMed ID: 17174394 [TBL] [Abstract][Full Text] [Related]
14. The bioaccumulation and effects of selenium in the oligochaete Lumbriculus variegatus via dissolved and dietary exposure routes. Xie L; Wu X; Chen H; Luo Y; Guo Z; Mu J; Blankson ER; Dong W; Klerks PL Aquat Toxicol; 2016 Sep; 178():1-7. PubMed ID: 27450235 [TBL] [Abstract][Full Text] [Related]
15. Effects of dietary methylmercury on reproduction of fathead minnows. Hammerschmidt CR; Sandheinrich MB; Wiener JG; Rada RG Environ Sci Technol; 2002 Mar; 36(5):877-83. PubMed ID: 11918010 [TBL] [Abstract][Full Text] [Related]
16. Effects of resveratrol and genistein on growth, nutrient utilization and fatty acid composition of rainbow trout. Torno C; Staats S; de Pascual-Teresa S; Rimbach G; Schulz C Animal; 2019 May; 13(5):933-940. PubMed ID: 30301484 [TBL] [Abstract][Full Text] [Related]
17. Toxicokinetic, toxicodynamic, and toxicoproteomic aspects of short-term exposure to trenbolone in female fish. Schultz IR; Nagler JJ; Swanson P; Wunschel D; Skillman AD; Burnett V; Smith D; Barry R Toxicol Sci; 2013 Dec; 136(2):413-29. PubMed ID: 24072461 [TBL] [Abstract][Full Text] [Related]
18. Effects of dietary oxidized fish oil supplementation on oxidative stress and antioxidant defense system in juvenile rainbow trout (Oncorhynchus mykiss). Fontagné-Dicharry S; Larroquet L; Dias K; Cluzeaud M; Heraud C; Corlay D Fish Shellfish Immunol; 2018 Mar; 74():43-51. PubMed ID: 29288811 [TBL] [Abstract][Full Text] [Related]
19. Acquired predator recognition by fathead minnows: influence of habitat characteristics on survival. Gazdewich KJ; Chivers DP J Chem Ecol; 2002 Feb; 28(2):439-45. PubMed ID: 11925078 [TBL] [Abstract][Full Text] [Related]
20. The relative importance of waterborne and dietborne arsenic exposure on survival and growth of juvenile rainbow trout. Erickson RJ; Mount DR; Highland TL; Russell Hockett J; Jenson CT Aquat Toxicol; 2011 Jul; 104(1-2):108-15. PubMed ID: 21549662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]