BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17022958)

  • 1. Catecholamines and development of cardiac pacemaking: an intrinsically intimate relationship.
    Ebert SN; Taylor DG
    Cardiovasc Res; 2006 Dec; 72(3):364-74. PubMed ID: 17022958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the pacemaker tissues of the heart.
    Christoffels VM; Smits GJ; Kispert A; Moorman AF
    Circ Res; 2010 Feb; 106(2):240-54. PubMed ID: 20133910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating mouse models for studying the function and fate of intrinsic cardiac adrenergic cells.
    Pfeifer K; Boe SP; Rong Q; Ebert SN
    Ann N Y Acad Sci; 2004 Jun; 1018():418-23. PubMed ID: 15240397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embryonic stem cells form an organized, functional cardiac conduction system in vitro.
    White SM; Claycomb WC
    Am J Physiol Heart Circ Physiol; 2005 Feb; 288(2):H670-9. PubMed ID: 15471973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of the cardiac pacemaking and conduction system.
    Gourdie RG; Harris BS; Bond J; Justus C; Hewett KW; O'Brien TX; Thompson RP; Sedmera D
    Birth Defects Res C Embryo Today; 2003 Feb; 69(1):46-57. PubMed ID: 12768657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic control of cardiac function.
    Arrenberg AB; Stainier DY; Baier H; Huisken J
    Science; 2010 Nov; 330(6006):971-4. PubMed ID: 21071670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The age-related decrease in catecholamine sensitivity is mediated by beta(1)-adrenergic receptors linked to a decrease in adenylate cyclase activity in ventricular myocytes from male Fischer 344 rats.
    Farrell SR; Howlett SE
    Mech Ageing Dev; 2008 Dec; 129(12):735-44. PubMed ID: 18973772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphatase inhibitor-1-deficient mice are protected from catecholamine-induced arrhythmias and myocardial hypertrophy.
    El-Armouche A; Wittköpper K; Degenhardt F; Weinberger F; Didié M; Melnychenko I; Grimm M; Peeck M; Zimmermann WH; Unsöld B; Hasenfuss G; Dobrev D; Eschenhagen T
    Cardiovasc Res; 2008 Dec; 80(3):396-406. PubMed ID: 18689792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of L-type Ca(2+) channel current density and inactivation by beta-adrenergic stimulation during murine cardiac embryogenesis.
    Nguemo F; Sasse P; Fleischmann BK; Kamanyi A; Schunkert H; Hescheler J; Reppel M
    Basic Res Cardiol; 2009 May; 104(3):295-306. PubMed ID: 18953481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular Ca2+ oscillations, a potential pacemaking mechanism in early embryonic heart cells.
    Sasse P; Zhang J; Cleemann L; Morad M; Hescheler J; Fleischmann BK
    J Gen Physiol; 2007 Aug; 130(2):133-44. PubMed ID: 17664344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pacemaker current: from basics to the clinics.
    Barbuti A; Baruscotti M; DiFrancesco D
    J Cardiovasc Electrophysiol; 2007 Mar; 18(3):342-7. PubMed ID: 17284289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cardiac pacemaker and conduction system develops from embryonic myocardium that retains its primitive phenotype.
    Bakker ML; Christoffels VM; Moorman AF
    J Cardiovasc Pharmacol; 2010 Jul; 56(1):6-15. PubMed ID: 20505520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conditional FKBP12.6 overexpression in mouse cardiac myocytes prevents triggered ventricular tachycardia through specific alterations in excitation-contraction coupling.
    Gellen B; Fernández-Velasco M; Briec F; Vinet L; LeQuang K; Rouet-Benzineb P; Bénitah JP; Pezet M; Palais G; Pellegrin N; Zhang A; Perrier R; Escoubet B; Marniquet X; Richard S; Jaisser F; Gómez AM; Charpentier F; Mercadier JJ
    Circulation; 2008 Apr; 117(14):1778-86. PubMed ID: 18378612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Offbeat mice.
    Gaussin V
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Oct; 280(2):1022-6. PubMed ID: 15368346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward an understanding of the genetics of murine cardiac pacemaking and conduction system development.
    Myers DC; Fishman GI
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Oct; 280(2):1018-21. PubMed ID: 15368345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competing oscillators in cardiac pacemaking: historical background.
    Noble D; Noble PJ; Fink M
    Circ Res; 2010 Jun; 106(12):1791-7. PubMed ID: 20576941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental molecular and stem cell therapies in cardiac electrophysiology.
    Gepstein L
    Ann N Y Acad Sci; 2008 Mar; 1123():224-31. PubMed ID: 18375594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The development of cardiac rhythm.
    Boullin J; Morgan JM
    Heart; 2005 Jul; 91(7):874-5. PubMed ID: 15958352
    [No Abstract]   [Full Text] [Related]  

  • 19. Embryonic epinephrine synthesis in the rat heart before innervation: association with pacemaking and conduction tissue development.
    Ebert SN; Thompson RP
    Circ Res; 2001 Jan; 88(1):117-24. PubMed ID: 11139483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac pacemaking.
    Science; 1978 Mar; 199(4334):1233-4. PubMed ID: 204009
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.