These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Stages of infection during the tripartite interaction between Xenorhabdus nematophila, its nematode vector, and insect hosts. Sicard M; Brugirard-Ricaud K; Pagès S; Lanois A; Boemare NE; Brehélin M; Givaudan A Appl Environ Microbiol; 2004 Nov; 70(11):6473-80. PubMed ID: 15528508 [TBL] [Abstract][Full Text] [Related]
44. Reexamination of phenoloxidase in larval circulating hemocytes of the silkworm, Bombyx mori. Ling E; Shirai K; Kanehatsu R; Kiguchi K Tissue Cell; 2005 Apr; 37(2):101-7. PubMed ID: 15748736 [TBL] [Abstract][Full Text] [Related]
45. Potentiating effect of Bacillus thuringiensis subsp. kurstaki on pathogenicity of entomopathogenic bacterium Xenorhabdus nematophila K1 against diamondback moth (Lepidoptera: Plutellidae). Jung SC; Kim YG J Econ Entomol; 2007 Feb; 100(1):246-50. PubMed ID: 17370835 [TBL] [Abstract][Full Text] [Related]
46. A pathogenic parasite interferes with phagocytosis of insect immunocompetent cells. Brivio MF; Mastore M; Nappi AJ Dev Comp Immunol; 2010 Sep; 34(9):991-8. PubMed ID: 20457179 [TBL] [Abstract][Full Text] [Related]
47. Physiological evidence of integrin-antibody reactive proteins influencing the innate cellular immune responses of larval Galleria mellonella hemocytes. Lapointe JF; McCarthy CD; Dunphy GB; Mandato CA Insect Sci; 2020 Apr; 27(2):239-255. PubMed ID: 30328680 [TBL] [Abstract][Full Text] [Related]
49. Changes in the haemocytes of Agrotis ipsilon larvae (Lepidoptera: Noctuidae) in relation to dimilin and Bacillus thuringiensis infections. El-Aziz NM; Awad HH Micron; 2010 Apr; 41(3):203-9. PubMed ID: 20056427 [TBL] [Abstract][Full Text] [Related]
50. Characterization of cell clusters in larval hemolymph of the cabbage armyworm Mamestra brassicae and their role in maintenance of hemocyte populations. Mangalika PR; Kawamoto T; Takahashi-Nakaguchi A; Iwabuchi K J Insect Physiol; 2010 Mar; 56(3):314-23. PubMed ID: 19913022 [TBL] [Abstract][Full Text] [Related]
51. Inhibition of Spodoptera frugiperda phenoloxidase activity by the products of the Xenorhabdus rhabduscin gene cluster. Eugenia Nuñez-Valdez M; Lanois A; Pagès S; Duvic B; Gaudriault S PLoS One; 2019; 14(2):e0212809. PubMed ID: 30794697 [TBL] [Abstract][Full Text] [Related]
52. Maturation of the immune system of the male house cricket, Acheta domesticus. Piñera AV; Charles HM; Dinh TA; Killian KA J Insect Physiol; 2013 Aug; 59(8):752-60. PubMed ID: 23727197 [TBL] [Abstract][Full Text] [Related]
53. Cellular immune response in Rhodnius prolixus: role of ecdysone in hemocyte phagocytosis. Figueiredo MB; Castro DP; S Nogueira NF; Garcia ES; Azambuja P J Insect Physiol; 2006 Jul; 52(7):711-6. PubMed ID: 16759667 [TBL] [Abstract][Full Text] [Related]
54. Regulation of melanization by glutathione in the moth Pseudoplusia includens. Clark KD; Lu Z; Strand MR Insect Biochem Mol Biol; 2010 Jun; 40(6):460-7. PubMed ID: 20417279 [TBL] [Abstract][Full Text] [Related]
55. Estimating disease resistance in insects: phenoloxidase and lysozyme-like activity and disease resistance in the cricket Gryllus texensis. Adamo SA J Insect Physiol; 2004; 50(2-3):209-16. PubMed ID: 15019523 [TBL] [Abstract][Full Text] [Related]