These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 17023044)

  • 1. Calcium gradients and the Golgi.
    Dolman NJ; Tepikin AV
    Cell Calcium; 2006; 40(5-6):505-12. PubMed ID: 17023044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytosolic Ca2+ signals depending on the functional state of the Golgi in HeLa cells.
    Vanoevelen J; Raeymaekers L; Dode L; Parys JB; De Smedt H; Callewaert G; Wuytack F; Missiaen L
    Cell Calcium; 2005 Nov; 38(5):489-95. PubMed ID: 16122795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium dynamics: spatio-temporal organization from the subcellular to the organ level.
    Dupont G; Combettes L; Leybaert L
    Int Rev Cytol; 2007; 261():193-245. PubMed ID: 17560283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Golgi Apparatus: Panel Point of Cytosolic Ca(2+) Regulation.
    Li LH; Tian XR; Jiang Z; Zeng LW; He WF; Hu ZP
    Neurosignals; 2013; 21(3-4):272-84. PubMed ID: 23796968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of mitochondrial calcium uptake rather than efflux impedes calcium release by inositol-1,4,5-trisphosphate-sensitive receptors.
    Chalmers S; McCarron JG
    Cell Calcium; 2009 Aug; 46(2):107-13. PubMed ID: 19577805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca(2+) signalling in the Golgi apparatus.
    Pizzo P; Lissandron V; Capitanio P; Pozzan T
    Cell Calcium; 2011 Aug; 50(2):184-92. PubMed ID: 21316101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sweet taste receptor interacting protein CIB1 is a general inhibitor of InsP3-dependent Ca2+ release in vivo.
    Hennigs JK; Burhenne N; Stähler F; Winnig M; Walter B; Meyerhof W; Schmale H
    J Neurochem; 2008 Sep; 106(5):2249-62. PubMed ID: 18627437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signaling proteins in the axoglial apparatus of sciatic nerve nodes of Ranvier.
    Toews JC; Schram V; Weerth SH; Mignery GA; Russell JT
    Glia; 2007 Jan; 55(2):202-13. PubMed ID: 17091480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ER and ageing II: calcium homeostasis.
    Puzianowska-Kuznicka M; Kuznicki J
    Ageing Res Rev; 2009 Jul; 8(3):160-72. PubMed ID: 19427411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The complex regulatory function of the ligand-binding domain of the inositol 1,4,5-trisphosphate receptor.
    Devogelaere B; Verbert L; Parys JB; Missiaen L; De Smedt H
    Cell Calcium; 2008 Jan; 43(1):17-27. PubMed ID: 17499849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca2+ microdomains in smooth muscle.
    McCarron JG; Chalmers S; Bradley KN; MacMillan D; Muir TC
    Cell Calcium; 2006; 40(5-6):461-93. PubMed ID: 17069885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A plethora of interacting organellar Ca2+ stores.
    Michelangeli F; Ogunbayo OA; Wootton LL
    Curr Opin Cell Biol; 2005 Apr; 17(2):135-40. PubMed ID: 15780589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adrenergic and calcium modulation of the heart in stress: from molecular biology to function.
    Krizanova O; Myslivecek J; Tillinger A; Jurkovicova D; Kubovcakova L
    Stress; 2007 Jun; 10(2):173-84. PubMed ID: 17514586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling local and global intracellular calcium responses mediated by diffusely distributed inositol 1,4,5-trisphosphate receptors.
    Williams GS; Molinelli EJ; Smith GD
    J Theor Biol; 2008 Jul; 253(1):170-88. PubMed ID: 18405920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of calcium releasing activity induced by inositol trisphosphate and cyclic ADP-ribose during in vitro maturation of sea urchin oocytes.
    Miyata K; Nakano T; Kuroda R; Kuroda H
    Dev Growth Differ; 2006 Dec; 48(9):605-13. PubMed ID: 17118015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human Golgi antiapoptotic protein modulates intracellular calcium fluxes.
    de Mattia F; Gubser C; van Dommelen MM; Visch HJ; Distelmaier F; Postigo A; Luyten T; Parys JB; de Smedt H; Smith GL; Willems PH; van Kuppeveld FJ
    Mol Biol Cell; 2009 Aug; 20(16):3638-45. PubMed ID: 19553469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding complex Ca2+ signals through the modulation of Ras signaling.
    Cullen PJ
    Curr Opin Cell Biol; 2006 Apr; 18(2):157-61. PubMed ID: 16488591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear calcium signaling by inositol trisphosphate in GH3 pituitary cells.
    Chamero P; Manjarres IM; García-Verdugo JM; Villalobos C; Alonso MT; García-Sancho J
    Cell Calcium; 2008 Feb; 43(2):205-14. PubMed ID: 17583789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium dynamics in bovine adrenal medulla chromaffin cell secretory granules.
    Santodomingo J; Vay L; Camacho M; Hernández-Sanmiguel E; Fonteriz RI; Lobatón CD; Montero M; Moreno A; Alvarez J
    Eur J Neurosci; 2008 Oct; 28(7):1265-74. PubMed ID: 18973554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium microdomains and oxidative stress.
    Davidson SM; Duchen MR
    Cell Calcium; 2006; 40(5-6):561-74. PubMed ID: 17049598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.