These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 17023162)
1. Age-related slip avoidance strategy while walking over a known slippery floor surface. Lockhart TE; Spaulding JM; Park SH Gait Posture; 2007 Jun; 26(1):142-9. PubMed ID: 17023162 [TBL] [Abstract][Full Text] [Related]
2. Relationship between hamstring activation rate and heel contact velocity: factors influencing age-related slip-induced falls. Lockhart TE; Kim S Gait Posture; 2006 Aug; 24(1):23-34. PubMed ID: 16112575 [TBL] [Abstract][Full Text] [Related]
3. Effects of age-related gait changes on the biomechanics of slips and falls. Lockhart TE; Woldstad JC; Smith JL Ergonomics; 2003 Oct; 46(12):1136-60. PubMed ID: 12933077 [TBL] [Abstract][Full Text] [Related]
4. The effects of 10% front load carriage on the likelihood of slips and falls. Kim S; Lockhart TE Ind Health; 2008 Jan; 46(1):32-9. PubMed ID: 18270448 [TBL] [Abstract][Full Text] [Related]
5. Temporal changes in the required shoe-floor friction when walking following an induced slip. Beringer DN; Nussbaum MA; Madigan ML PLoS One; 2014; 9(5):e96525. PubMed ID: 24789299 [TBL] [Abstract][Full Text] [Related]
6. Slip-related muscle activation patterns in the stance leg during walking. Chambers AJ; Cham R Gait Posture; 2007 Apr; 25(4):565-72. PubMed ID: 16876417 [TBL] [Abstract][Full Text] [Related]
7. Biomechanical characteristics of slipping during unconstrained walking, turning, gait initiation and termination. Nagano H; Sparrow WA; Begg RK Ergonomics; 2013; 56(6):1038-48. PubMed ID: 23600960 [TBL] [Abstract][Full Text] [Related]
8. Characterizing slip-like responses during gait using an entire support surface perturbation: Comparisons to previously established slip methods. Huntley AH; Rajachandrakumar R; Schinkel-Ivy A; Mansfield A Gait Posture; 2019 Mar; 69():130-135. PubMed ID: 30708096 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical gait analysis for the extraction of slip resistance test parameters. Fischer H; Kirchberg S; Moessner T Ind Health; 2009 Dec; 47(6):617-25. PubMed ID: 19996537 [TBL] [Abstract][Full Text] [Related]
10. Control of dynamic stability during adaptation to gait termination on a slippery surface. Oates AR; Frank JS; Patla AE Exp Brain Res; 2010 Feb; 201(1):47-57. PubMed ID: 19834697 [TBL] [Abstract][Full Text] [Related]
11. Effect of load carrying on required coefficient of friction. Seo JS; Kim S Technol Health Care; 2019; 27(S1):15-22. PubMed ID: 31045523 [TBL] [Abstract][Full Text] [Related]
12. The anatomy of a slip: Kinetic and kinematic characteristics of slip and non-slip matched trials. McGorry RW; DiDomenico A; Chang CC Appl Ergon; 2010 Jan; 41(1):41-6. PubMed ID: 19427993 [TBL] [Abstract][Full Text] [Related]
13. Gait adaptations to awareness and experience of a slip when walking on a cross-slope. Lawrence D; Domone S; Heller B; Hendra T; Mawson S; Wheat J Gait Posture; 2015 Oct; 42(4):575-9. PubMed ID: 26404081 [TBL] [Abstract][Full Text] [Related]
14. Early heelstrike kinetics are indicative of slip potential during walking over a contaminated surface. Osis ST; Worobets JT; Stefanyshyn DJ Hum Factors; 2012 Feb; 54(1):5-13. PubMed ID: 22409098 [TBL] [Abstract][Full Text] [Related]
15. Required coefficient of friction during level walking is predictive of slipping. Beschorner KE; Albert DL; Redfern MS Gait Posture; 2016 Jul; 48():256-260. PubMed ID: 27367937 [TBL] [Abstract][Full Text] [Related]
16. Changes in gait when anticipating slippery floors. Cham R; Redfern MS Gait Posture; 2002 Apr; 15(2):159-71. PubMed ID: 11869910 [TBL] [Abstract][Full Text] [Related]
17. Shoe sole tread designs and outcomes of slipping and falling on slippery floor surfaces. Liu LW; Lee YH; Lin CJ; Li KW; Chen CY PLoS One; 2013; 8(7):e68989. PubMed ID: 23894388 [TBL] [Abstract][Full Text] [Related]
18. The effect of shoe sole tread groove depth on the gait parameters during walking on dry and slippery surface. Ziaei M; Nabavi SH; Mokhtarinia HR; Tabatabai Ghomshe SF Int J Occup Environ Med; 2013 Jan; 4(1):27-35. PubMed ID: 23279795 [TBL] [Abstract][Full Text] [Related]
19. Greater toe grip and gentler heel strike are the strategies to adapt to slippery surface. Fong DT; Mao DW; Li JX; Hong Y J Biomech; 2008; 41(4):838-44. PubMed ID: 18068710 [TBL] [Abstract][Full Text] [Related]
20. Gait parameters as predictors of slip severity in younger and older adults. Moyer BE; Chambers AJ; Redfern MS; Cham R Ergonomics; 2006 Mar; 49(4):329-43. PubMed ID: 16690563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]