These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 17023370)

  • 1. Theory of multivalent binding in one and two-dimensional lattices.
    Di Cera E; Kong Y
    Biophys Chem; 1996 Oct; 61(2-3):107-24. PubMed ID: 17023370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic derivation of partition functions for ligand binding to two-dimensional lattices.
    Wang L; Di Cera E
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):12953-8. PubMed ID: 8917525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand binding on ladder lattices.
    Kong Y
    Biophys Chem; 1999 Sep; 81(1):7-21. PubMed ID: 17030328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand binding to one-dimensional lattice-like macromolecules: analysis of the McGhee-von Hippel theory implemented in isothermal titration calorimetry.
    Velázquez-Campoy A
    Anal Biochem; 2006 Jan; 348(1):94-104. PubMed ID: 16289442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of binding site neighbor-effect parameters to evaluate the interactions between adjacent ligands on a linear lattice. Effects on ligand-lattice association.
    Wolfe AR; Meehan T
    J Mol Biol; 1992 Feb; 223(4):1063-87. PubMed ID: 1538390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Map analysis of ligand binding to a linear lattice.
    Cera ED; Phillipson PE
    Biophys Chem; 1996 Oct; 61(2-3):125-9. PubMed ID: 17023371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A note on the quantitative properties of McGhee-von Hippel model.
    Kong Y
    Biophys Chem; 2002 Jan; 95(1):1-6. PubMed ID: 11880169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition modes in Ising networks: an approximate theory for macromolecular recognition.
    Keating S; Di Cera E
    Biophys J; 1993 Jul; 65(1):253-69. PubMed ID: 8369436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative and non-cooperative binding of large ligands to a finite one-dimensional lattice. A model for ligand-oligonucleotide interactions.
    Epstein IR
    Biophys Chem; 1978 Sep; 8(4):327-39. PubMed ID: 728537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric conformational spread: exact results using a simple transfer matrix method.
    Mochrie SG; Mack AH; Regan L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031913. PubMed ID: 21230114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A general method of analysis of ligand binding to competing macromolecules using the spectroscopic signal originating from a reference macromolecule. Application to Escherichia coli replicative helicase DnaB protein nucleic acid interactions.
    Jezewska MJ; Bujalowski W
    Biochemistry; 1996 Feb; 35(7):2117-28. PubMed ID: 8652554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytic binding isotherms describing competitive interactions of a protein ligand with specific and nonspecific sites on the same DNA oligomer.
    Tsodikov OV; Holbrook JA; Shkel IA; Record MT
    Biophys J; 2001 Oct; 81(4):1960-9. PubMed ID: 11566770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative kinetics of ligand binding to linear polymers.
    Villaluenga JPG; Cao-García FJ
    Comput Struct Biotechnol J; 2022; 20():521-533. PubMed ID: 35495112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the binding interactions between EvaGreen dye and dsDNA.
    Shoute LCT; Loppnow GR
    Phys Chem Chem Phys; 2018 Feb; 20(7):4772-4780. PubMed ID: 29380825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of drug-DNA binding isotherms: a Monte Carlo approach.
    Correia JJ; Chaires JB
    Methods Enzymol; 1994; 240():593-614. PubMed ID: 7823850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative and noncooperative binding of protein ligands to nucleic acid lattices: experimental approaches to the determination of thermodynamic parameters.
    Kowalczykowski SC; Paul LS; Lonberg N; Newport JW; McSwiggen JA; von Hippel PH
    Biochemistry; 1986 Mar; 25(6):1226-40. PubMed ID: 3486003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topological Quantum Codes from Lattices Partition on the
    de Carvalho ED; Soares WS; da Silva EB
    Entropy (Basel); 2021 Jul; 23(8):. PubMed ID: 34441099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel-stranded guanine quadruplex interactions with a copper cationic porphyrin.
    Keating LR; Szalai VA
    Biochemistry; 2004 Dec; 43(50):15891-900. PubMed ID: 15595844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative studies of the non-productive binding of lysozyme to partially N-acetylated chitosans. Binding of large ligands to a one-dimensional binary lattice studied by a modified McGhee and von Hippel model.
    Kristiansen A; Vårum KM; Grasdalen H
    Biochim Biophys Acta; 1998 Sep; 1425(1):137-50. PubMed ID: 9813287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the analysis of linear binding effects associated with curved Scatchard plots.
    Schwarz G
    Biophys Chem; 1976 Dec; 6(1):65-76. PubMed ID: 1016685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.