These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 17023505)

  • 41. The structural basis of the increase in isometric force production with temperature in frog skeletal muscle.
    Linari M; Brunello E; Reconditi M; Sun YB; Panine P; Narayanan T; Piazzesi G; Lombardi V; Irving M
    J Physiol; 2005 Sep; 567(Pt 2):459-69. PubMed ID: 15961426
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sarcomere tension-stiffness relation during the tetanus rise in single frog muscle fibres.
    Bagni MA; Cecchi G; Colombini B; Colomo F
    J Muscle Res Cell Motil; 1999 Aug; 20(5-6):469-76. PubMed ID: 10555065
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The mechanism of the resistance to stretch of isometrically contracting single muscle fibres.
    Fusi L; Reconditi M; Linari M; Brunello E; Elangovan R; Lombardi V; Piazzesi G
    J Physiol; 2010 Feb; 588(Pt 3):495-510. PubMed ID: 19948653
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Latency relaxation in frog skeletal muscle under hypertonic conditions.
    Bartels EM; Jensen P
    Acta Physiol Scand; 1982 Jun; 115(2):165-72. PubMed ID: 6982600
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Force generation and work production by covalently cross-linked actin-myosin cross-bridges in rabbit muscle fibers.
    Bershitsky SY; Tsaturyan AK
    Biophys J; 1995 Sep; 69(3):1011-21. PubMed ID: 8519956
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Crossbridge and non-crossbridge contributions to tension in lengthening rat muscle: force-induced reversal of the power stroke.
    Pinniger GJ; Ranatunga KW; Offer GW
    J Physiol; 2006 Jun; 573(Pt 3):627-43. PubMed ID: 16627571
    [TBL] [Abstract][Full Text] [Related]  

  • 47. X-ray diffraction studies on thermally induced tension generation in rigor muscle.
    Rapp GJ; Davis JS
    J Muscle Res Cell Motil; 1996 Dec; 17(6):617-29. PubMed ID: 8994081
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The force-length relationship of mechanically isolated sarcomeres.
    Herzog W; Joumaa V; Leonard TR
    Adv Exp Med Biol; 2010; 682():141-61. PubMed ID: 20824524
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sarcomere-length dependence of myosin filament structure in skeletal muscle fibres of the frog.
    Reconditi M; Brunello E; Fusi L; Linari M; Martinez MF; Lombardi V; Irving M; Piazzesi G
    J Physiol; 2014 Mar; 592(5):1119-37. PubMed ID: 24344169
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural changes in myosin motors and filaments during relaxation of skeletal muscle.
    Brunello E; Fusi L; Reconditi M; Linari M; Bianco P; Panine P; Narayanan T; Piazzesi G; Lombardi V; Irving M
    J Physiol; 2009 Sep; 587(Pt 18):4509-21. PubMed ID: 19651765
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Axial disposition of myosin heads in isometrically contracting muscles.
    Juanhuix J; Bordas J; Campmany J; Svensson A; Bassford ML; Narayanan T
    Biophys J; 2001 Mar; 80(3):1429-41. PubMed ID: 11222303
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of sarcomere length, tonicity, and external sodium concentration on conduction velocity in frog muscle fibres.
    Oetliker H; Schümperli RA
    J Physiol; 1982 Nov; 332():203-21. PubMed ID: 6984073
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tension and instantaneous stiffness of single muscle fibers immersed in Ringer solution of decreased tonicity.
    Bressler BH; Matsuba K
    Biophys J; 1991 May; 59(5):1002-6. PubMed ID: 1868151
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of stretching on undamped elasticity in muscle fibres from Rana temporaria.
    Mantovani M; Cavagna GA; Heglund NC
    J Muscle Res Cell Motil; 1999 Jan; 20(1):33-43. PubMed ID: 10360232
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A combined mechanical and X-ray diffraction study of stretch potentiation in single frog muscle fibres.
    Linari M; Lucii L; Reconditi M; Casoni ME; Amenitsch H; Bernstorff S; Piazzesi G; Lombardi V
    J Physiol; 2000 Aug; 526 Pt 3(Pt 3):589-96. PubMed ID: 10922010
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanical and structural properties underlying contraction of skeletal muscle fibers after partial 1-ethyl-3-[3-dimethylamino)propyl]carbodiimide cross-linking.
    Bershitsky S; Tsaturyan A; Bershitskaya O; Mashanov G; Brown P; Webb M; Ferenczi MA
    Biophys J; 1996 Sep; 71(3):1462-74. PubMed ID: 8874020
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of stretch and release on equatorial X-ray diffraction during a twitch contraction of frog skeletal muscle.
    Iwamoto H; Kobayashi T; Amemiya Y; Wakabayashi K
    Biophys J; 1995 Jan; 68(1):227-34. PubMed ID: 7711245
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Force generation and shift of mass between myosin and actin in skinned striated muscle fibres at low calcium concentrations.
    Schiereck P; van Heijst BG; Jansen PM; Schiereck J; van der Leun M; Bras W; de Beer EL
    Eur Biophys J; 1998; 27(6):575-81. PubMed ID: 9791940
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stiffness changes during enhancement and deficit of isometric force by slow length changes in frog skeletal muscle fibres.
    Sugi H; Tsuchiya T
    J Physiol; 1988 Dec; 407():215-29. PubMed ID: 3256616
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Muscle work enhancement by stretch. Passive visco-elasticity or cross-bridges?
    Cavagna GA; Heglund NC; Mantovani M
    Adv Exp Med Biol; 1998; 453():393-407; discussion 407-9. PubMed ID: 9889851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.