These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 17023543)

  • 21. Alternative initial proton acceptors for the D pathway of Rhodobacter sphaeroides cytochrome c oxidase.
    Varanasi L; Hosler J
    Biochemistry; 2011 Apr; 50(14):2820-8. PubMed ID: 21344856
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transmembrane proton translocation by cytochrome c oxidase.
    Brändén G; Gennis RB; Brzezinski P
    Biochim Biophys Acta; 2006 Aug; 1757(8):1052-63. PubMed ID: 16824482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrostatic study of the proton pumping mechanism in bovine heart cytochrome C oxidase.
    Popović DM; Stuchebrukhov AA
    J Am Chem Soc; 2004 Feb; 126(6):1858-71. PubMed ID: 14871119
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deuterium isotope effect of proton pumping in cytochrome c oxidase.
    Salomonsson L; Brändén G; Brzezinski P
    Biochim Biophys Acta; 2008 Apr; 1777(4):343-50. PubMed ID: 18371493
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Charge transfer in the K proton pathway linked to electron transfer to the catalytic site in cytochrome c oxidase.
    Lepp H; Svahn E; Faxén K; Brzezinski P
    Biochemistry; 2008 Apr; 47(17):4929-35. PubMed ID: 18393448
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase.
    Belevich I; Verkhovsky MI; Wikström M
    Nature; 2006 Apr; 440(7085):829-32. PubMed ID: 16598262
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intramolecular proton-transfer reactions in a membrane-bound proton pump: the effect of pH on the peroxy to ferryl transition in cytochrome c oxidase.
    Namslauer A; Aagaard A; Katsonouri A; Brzezinski P
    Biochemistry; 2003 Feb; 42(6):1488-98. PubMed ID: 12578361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of a pH Gradient on the Protonation States of Cytochrome c Oxidase: A Continuum Electrostatics Study.
    Magalhães PR; Oliveira AS; Campos SR; Soares CM; Baptista AM
    J Chem Inf Model; 2017 Feb; 57(2):256-266. PubMed ID: 28095694
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electronation-dependent structural change at the proton exit side of cytochrome c oxidase as revealed by site-directed fluorescence labeling.
    Wolf A; Wonneberg J; Balke J; Alexiev U
    FEBS J; 2020 Mar; 287(6):1232-1246. PubMed ID: 31597007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protonation-State Dependence of Hydration and Interactions in the Two Proton-Conducting Channels of Cytochrome c Oxidase.
    Gorriz RF; Volkenandt S; Imhof P
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445646
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cytochrome c oxidase: chemistry of a molecular machine.
    Musser SM; Stowell MH; Chan SI
    Adv Enzymol Relat Areas Mol Biol; 1995; 71():79-208. PubMed ID: 8644492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expanding the view of proton pumping in cytochrome c oxidase through computer simulation.
    Peng Y; Voth GA
    Biochim Biophys Acta; 2012 Apr; 1817(4):518-25. PubMed ID: 22178790
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of proton pumping by zinc ions during specific reaction steps in cytochrome c oxidase.
    Faxén K; Salomonsson L; Adelroth P; Brzezinski P
    Biochim Biophys Acta; 2006; 1757(5-6):388-94. PubMed ID: 16806055
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative genomics and site-directed mutagenesis support the existence of only one input channel for protons in the C-family (cbb3 oxidase) of heme-copper oxygen reductases.
    Hemp J; Han H; Roh JH; Kaplan S; Martinez TJ; Gennis RB
    Biochemistry; 2007 Sep; 46(35):9963-72. PubMed ID: 17676874
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aspartate-132 in cytochrome c oxidase from Rhodobacter sphaeroides is involved in a two-step proton transfer during oxo-ferryl formation.
    Smirnova IA; Adelroth P; Gennis RB; Brzezinski P
    Biochemistry; 1999 May; 38(21):6826-33. PubMed ID: 10346904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. G204D, a mutation that blocks the proton-conducting D-channel of the aa3-type cytochrome c oxidase from Rhodobacter sphaeroides.
    Han D; Morgan JE; Gennis RB
    Biochemistry; 2005 Sep; 44(38):12767-74. PubMed ID: 16171391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of subunit III and its lipids in the molecular mechanism of cytochrome c oxidase.
    Sharma V; Ala-Vannesluoma P; Vattulainen I; Wikström M; Róg T
    Biochim Biophys Acta; 2015 Aug; 1847(8):690-7. PubMed ID: 25896562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proton transfer in the K-channel analog of B-type Cytochrome c oxidase from Thermus thermophilus.
    Woelke AL; Wagner A; Galstyan G; Meyer T; Knapp EW
    Biophys J; 2014 Nov; 107(9):2177-84. PubMed ID: 25418102
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Mg2+-containing Water Cluster of Mammalian Cytochrome c Oxidase Collects Four Pumping Proton Equivalents in Each Catalytic Cycle.
    Yano N; Muramoto K; Shimada A; Takemura S; Baba J; Fujisawa H; Mochizuki M; Shinzawa-Itoh K; Yamashita E; Tsukihara T; Yoshikawa S
    J Biol Chem; 2016 Nov; 291(46):23882-23894. PubMed ID: 27605664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding the cytochrome c oxidase proton pump: thermodynamics of redox linkage.
    Musser SM; Chan SI
    Biophys J; 1995 Jun; 68(6):2543-55. PubMed ID: 7647257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.