These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 17023599)
1. The landing-take-off asymmetry in human running. Cavagna GA J Exp Biol; 2006 Oct; 209(Pt 20):4051-60. PubMed ID: 17023599 [TBL] [Abstract][Full Text] [Related]
2. The landing-take-off asymmetry of human running is enhanced in old age. Cavagna GA; Legramandi MA; Peyré-Tartaruga LA J Exp Biol; 2008 May; 211(Pt 10):1571-8. PubMed ID: 18456884 [TBL] [Abstract][Full Text] [Related]
3. Biomechanical and physiological aspects of legged locomotion in humans. Saibene F; Minetti AE Eur J Appl Physiol; 2003 Jan; 88(4-5):297-316. PubMed ID: 12527959 [TBL] [Abstract][Full Text] [Related]
4. An analysis of the rebound of the body in backward human running. Cavagna GA; Legramandi MA; La Torre A J Exp Biol; 2012 Jan; 215(Pt 1):75-84. PubMed ID: 22162855 [TBL] [Abstract][Full Text] [Related]
5. Effect of an increase in gravity on the power output and the rebound of the body in human running. Cavagna GA; Heglund NC; Willems PA J Exp Biol; 2005 Jun; 208(Pt 12):2333-46. PubMed ID: 15939774 [TBL] [Abstract][Full Text] [Related]
6. Dynamics of the body centre of mass during actual acceleration across transition speed. Segers V; Aerts P; Lenoir M; De Clercq D J Exp Biol; 2007 Feb; 210(Pt 4):578-85. PubMed ID: 17267643 [TBL] [Abstract][Full Text] [Related]
7. Influence of the mechanical properties of the muscle-tendon unit on force generation in runners with different running economy. Albracht K; Arampatzis A Biol Cybern; 2006 Jul; 95(1):87-96. PubMed ID: 16628449 [TBL] [Abstract][Full Text] [Related]
8. Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed. Lai A; Schache AG; Lin YC; Pandy MG J Exp Biol; 2014 Sep; 217(Pt 17):3159-68. PubMed ID: 24948642 [TBL] [Abstract][Full Text] [Related]
9. Muscle tuning during running: implications of an un-tuned landing. Boyer KA; Nigg BM J Biomech Eng; 2006 Dec; 128(6):815-22. PubMed ID: 17154680 [TBL] [Abstract][Full Text] [Related]
10. Joint work and power associated with acceleration and deceleration in tammar wallabies (Macropus eugenii). McGowan CP; Baudinette RV; Biewener AA J Exp Biol; 2005 Jan; 208(Pt 1):41-53. PubMed ID: 15601876 [TBL] [Abstract][Full Text] [Related]
11. Muscle mechanical work and elastic energy utilization during walking and running near the preferred gait transition speed. Sasaki K; Neptune RR Gait Posture; 2006 Apr; 23(3):383-90. PubMed ID: 16029949 [TBL] [Abstract][Full Text] [Related]
12. Sprint running: a new energetic approach. di Prampero PE; Fusi S; Sepulcri L; Morin JB; Belli A; Antonutto G J Exp Biol; 2005 Jul; 208(Pt 14):2809-16. PubMed ID: 16000549 [TBL] [Abstract][Full Text] [Related]
13. The integrated function of muscles and tendons during locomotion. Roberts TJ Comp Biochem Physiol A Mol Integr Physiol; 2002 Dec; 133(4):1087-99. PubMed ID: 12485693 [TBL] [Abstract][Full Text] [Related]
14. Mechanics of human triceps surae muscle in walking, running and jumping. Hof AL; Van Zandwijk JP; Bobbert MF Acta Physiol Scand; 2002 Jan; 174(1):17-30. PubMed ID: 11851593 [TBL] [Abstract][Full Text] [Related]
15. The cost of running uphill: linking organismal and muscle energy use in guinea fowl (Numida meleagris). Rubenson J; Henry HT; Dimoulas PM; Marsh RL J Exp Biol; 2006 Jul; 209(Pt 13):2395-408. PubMed ID: 16788023 [TBL] [Abstract][Full Text] [Related]
16. Horses damp the spring in their step. Wilson AM; McGuigan MP; Su A; van Den Bogert AJ Nature; 2001 Dec 20-27; 414(6866):895-9. PubMed ID: 11780059 [TBL] [Abstract][Full Text] [Related]
17. The mechanisms for minimizing energy expenditure in human locomotion. Saibene F Eur J Clin Nutr; 1990; 44 Suppl 1():65-71. PubMed ID: 2193805 [TBL] [Abstract][Full Text] [Related]