BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 1702380)

  • 1. [Information storage in a bilayer lipid membrane modified by staphylotoxin].
    Krasil'nikov OV; Merzliak PG; Sabirov RZ; Tashmukhamedov BA
    Dokl Akad Nauk SSSR; 1990; 314(2):497-500. PubMed ID: 1702380
    [No Abstract]   [Full Text] [Related]  

  • 2. [Activity of toxins produced by Pseudomonas syringae pv. syringae in model and cell membranes].
    Gur'nev FA; Kaulin IuA; Tikhomirova AV; Wangspa R; Takemoto D; Malev VV; Shchagina LV
    Tsitologiia; 2002; 44(3):296-304. PubMed ID: 12094768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Interaction between filamentous actin and lipid bilayer causes the increase of syringomycin E channel-forming activity].
    Bessonov AN; Gur'nev FA; Kuznetsova IM; Takemoto JY; Turoverov KK; Malev VV; Shchagina LV
    Tsitologiia; 2004; 46(7):628-33. PubMed ID: 15473373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Kinetic parameters of single ion channels and stationary conductivities of phytotoxin modified lipid bilayers].
    Ostroumova OS; Gur'nev FA; Takemoto JY; Shchagina LV; Malev VV
    Tsitologiia; 2005; 47(4):338-43. PubMed ID: 16706157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of lipid bilayer membranes to detect pore formation by toxins.
    Kagan BL; Sokolov Y
    Methods Enzymol; 1994; 235():691-705. PubMed ID: 7520122
    [No Abstract]   [Full Text] [Related]  

  • 6. [Properties of conductivity channels induced in phospholipid bilayer membranes by alpha-staphylotoxin].
    Krasil'nikov OV; Ternovskiĭ VI; Tashmukhamedov BA
    Biofizika; 1981; 26(2):271-6. PubMed ID: 6266506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of molecular properties of pore-forming toxins with planar lipid bilayers.
    Dalla Serra M; Menestrina G
    Methods Mol Biol; 2000; 145():171-88. PubMed ID: 10820722
    [No Abstract]   [Full Text] [Related]  

  • 8. Ion channel and toxin measurement using a high throughput lipid membrane platform.
    Poulos JL; Jeon TJ; Damoiseaux R; Gillespie EJ; Bradley KA; Schmidt JJ
    Biosens Bioelectron; 2009 Feb; 24(6):1806-10. PubMed ID: 18849158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic channel behavior of modified cyclodextrins inserted in lipid membranes.
    Bacri L; Benkhaled A; Guégan P; Auvray L
    Langmuir; 2005 Jun; 21(13):5842-6. PubMed ID: 15952831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Distribution of conductivity amplitudes of toxin-induced ion channels in the lipid layer].
    Krasil'nikov OV; Sabirov RZ; Ternovskiĭ VI; Zaripova RK; Merzliak PG
    Biofizika; 1987; 32(4):681-3. PubMed ID: 2444268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel method for artificial lipid-bilayer formation.
    Ide T; Ichikawa T
    Biosens Bioelectron; 2005 Oct; 21(4):672-7. PubMed ID: 16202882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Amphotericin B channel conductance inactivation].
    Ibragimova VKh; Alieva IN; Aliev DI
    Tsitologiia; 2003; 45(8):804-11. PubMed ID: 15216632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Cation-anion selectivity of staphylococcal channels in the lipid bilayer].
    Krasil'nikov OV; Ternovskiĭ VI; Sabirov RZ; Zaripova RK; Tashmukhamedov BA
    Biofizika; 1986; 31(4):606-10. PubMed ID: 2428407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Memory is a property of an ion channels pool: ion channels formed by Staphylococcus aureus alpha-toxin.
    Krasilnikov OV; Merzliak PG; Sabirov RZ; Tashmuk-Hamedov BA
    Gen Physiol Biophys; 1990 Dec; 9(6):569-75. PubMed ID: 1706676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single molecule measurements within individual membrane-bound ion channels using a polymer-based bilayer lipid membrane chip.
    Hromada LP; Nablo BJ; Kasianowicz JJ; Gaitan MA; DeVoe DL
    Lab Chip; 2008 Apr; 8(4):602-8. PubMed ID: 18369516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Mechanosensitivity of gramicidin A channels in semispherical bilayer membranes at constant tension].
    Markin VS; Shlenskiĭ VG; Saimon SA; Benos DD; Ismailov II
    Biofizika; 2006; 51(6):1014-8. PubMed ID: 17175912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Channels formed in phospholipid bilayer membranes by diphtheria, tetanus, botulinum and anthrax toxin.
    Finkelstein A
    J Physiol (Paris); 1990; 84(2):188-90. PubMed ID: 1705290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion transport through channels formed in lipid bilayers by Staphylococcus aureus alpha-toxin.
    Krasilnikov OV; Sabirov RZ
    Gen Physiol Biophys; 1989 Jun; 8(3):213-22. PubMed ID: 2475386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure of Staphylococcus aureus alpha-toxin-induced ionic channel.
    Krasilnikov OV; Sabirov RZ; Ternovsky VI; Merzliak PG; Tashmukhamedov BA
    Gen Physiol Biophys; 1988 Oct; 7(5):467-73. PubMed ID: 2466732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Channel-forming action--a general property of venoms of spiders in the family Theridiidae (Aranei)].
    Kazakov I; Nenilin AB; Usmanov PB; Tashmukhamedov BA
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1985; (2):30-3. PubMed ID: 2580568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.