These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
382 related articles for article (PubMed ID: 17023850)
1. Small intestinal submucosa as a potential bioscaffold for intervertebral disc regeneration. Le Visage C; Yang SH; Kadakia L; Sieber AN; Kostuik JP; Leong KW Spine (Phila Pa 1976); 2006 Oct; 31(21):2423-30; discussion 2431. PubMed ID: 17023850 [TBL] [Abstract][Full Text] [Related]
2. The potential and limitations of a cell-seeded collagen/hyaluronan scaffold to engineer an intervertebral disc-like matrix. Alini M; Li W; Markovic P; Aebi M; Spiro RC; Roughley PJ Spine (Phila Pa 1976); 2003 Mar; 28(5):446-54; discussion 453. PubMed ID: 12616155 [TBL] [Abstract][Full Text] [Related]
3. [The experiment of porcine keratinocytes cultured on porcine small intestinal submucosa in vitro]. Fan WJ; Yang ZM; Li XQ; Wang Z; Zhi W; Qiu L Zhonghua Zheng Xing Wai Ke Za Zhi; 2006 May; 22(3):220-2. PubMed ID: 16883900 [TBL] [Abstract][Full Text] [Related]
4. Platelet-rich plasma (PRP) stimulates the extracellular matrix metabolism of porcine nucleus pulposus and anulus fibrosus cells cultured in alginate beads. Akeda K; An HS; Pichika R; Attawia M; Thonar EJ; Lenz ME; Uchida A; Masuda K Spine (Phila Pa 1976); 2006 Apr; 31(9):959-66. PubMed ID: 16641770 [TBL] [Abstract][Full Text] [Related]
5. Growth of bone marrow stromal cells on small intestinal submucosa: an alternative cell source for tissue engineered bladder. Zhang Y; Lin HK; Frimberger D; Epstein RB; Kropp BP BJU Int; 2005 Nov; 96(7):1120-5. PubMed ID: 16225540 [TBL] [Abstract][Full Text] [Related]
6. Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in three-dimensional poly(lactic-co-glycolic acid) scaffold. Sha'ban M; Yoon SJ; Ko YK; Ha HJ; Kim SH; So JW; Idrus RB; Khang G J Biomater Sci Polym Ed; 2008; 19(9):1219-37. PubMed ID: 18727862 [TBL] [Abstract][Full Text] [Related]
7. Human intervertebral disc cells promote nerve growth over substrata of human intervertebral disc aggrecan. Johnson WE; Sivan S; Wright KT; Eisenstein SM; Maroudas A; Roberts S Spine (Phila Pa 1976); 2006 May; 31(11):1187-93. PubMed ID: 16688030 [TBL] [Abstract][Full Text] [Related]
8. Meniscus reconstruction through coculturing meniscus cells with synovium-derived stem cells on small intestine submucosa--a pilot study to engineer meniscus tissue constructs. Tan Y; Zhang Y; Pei M Tissue Eng Part A; 2010 Jan; 16(1):67-79. PubMed ID: 19619075 [TBL] [Abstract][Full Text] [Related]
9. Culture of human anulus fibrosus cells on polyamide nanofibers: extracellular matrix production. Gruber HE; Hoelscher G; Ingram JA; Hanley EN Spine (Phila Pa 1976); 2009 Jan; 34(1):4-9. PubMed ID: 19127155 [TBL] [Abstract][Full Text] [Related]
10. Identification of extractable growth factors from small intestinal submucosa. Voytik-Harbin SL; Brightman AO; Kraine MR; Waisner B; Badylak SF J Cell Biochem; 1997 Dec; 67(4):478-91. PubMed ID: 9383707 [TBL] [Abstract][Full Text] [Related]
11. An experimental study of the regeneration of the intervertebral disc with an allograft of cultured annulus fibrosus cells using a tissue-engineering method. Sato M; Asazuma T; Ishihara M; Ishihara M; Kikuchi T; Kikuchi M; Fujikawa K Spine (Phila Pa 1976); 2003 Mar; 28(6):548-53. PubMed ID: 12642760 [TBL] [Abstract][Full Text] [Related]
12. An in-vitro study on regeneration of human nucleus pulposus by using gelatin/chondroitin-6-sulfate/hyaluronan tri-copolymer scaffold. Yang SH; Chen PQ; Chen YF; Lin FH Artif Organs; 2005 Oct; 29(10):806-14. PubMed ID: 16185342 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of small intestinal submucosa as scaffolds for intestinal tissue engineering. Lee M; Chang PC; Dunn JC J Surg Res; 2008 Jun; 147(2):168-71. PubMed ID: 18406427 [TBL] [Abstract][Full Text] [Related]
14. An injectable cross-linked scaffold for nucleus pulposus regeneration. Halloran DO; Grad S; Stoddart M; Dockery P; Alini M; Pandit AS Biomaterials; 2008 Feb; 29(4):438-47. PubMed ID: 17959242 [TBL] [Abstract][Full Text] [Related]
15. [Small intestine submucosa as a scaffold for cartilage reconstruction in vitro]. Kong Q; Gao B; Xing R; Xiang Z; Yang Z; Luo J; Li X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Jun; 28(3):521-5. PubMed ID: 21774215 [TBL] [Abstract][Full Text] [Related]
16. Cell polarity in the anulus of the human intervertebral disc: morphologic, immunocytochemical, and molecular evidence. Gruber HE; Ingram J; Hoelscher GL; Norton HJ; Hanley EN Spine (Phila Pa 1976); 2007 May; 32(12):1287-94. PubMed ID: 17515816 [TBL] [Abstract][Full Text] [Related]
17. Notochordal cell produce and assemble extracellular matrix in a distinct manner, which may be responsible for the maintenance of healthy nucleus pulposus. Cappello R; Bird JL; Pfeiffer D; Bayliss MT; Dudhia J Spine (Phila Pa 1976); 2006 Apr; 31(8):873-82; discussion 883. PubMed ID: 16622374 [TBL] [Abstract][Full Text] [Related]
18. Morphologic evaluation of regenerated small bowel by small intestinal submucosa. Wang ZQ; Watanabe Y; Noda T; Yoshida A; Oyama T; Toki A J Pediatr Surg; 2005 Dec; 40(12):1898-902. PubMed ID: 16338314 [TBL] [Abstract][Full Text] [Related]
19. The role of MMP-I up-regulation in the increased compliance in muscle-derived stem cell-seeded small intestinal submucosa. Long RA; Nagatomi J; Chancellor MB; Sacks MS Biomaterials; 2006 Apr; 27(11):2398-404. PubMed ID: 16337680 [TBL] [Abstract][Full Text] [Related]
20. [Experimental studies on canine bladder smooth muscle cells cultured on acellular small intestinal submucosa in vitro]. Han P; Yang Z; Zhi W Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Dec; 21(12):1366-70. PubMed ID: 18277686 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]