BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 170246)

  • 1. Genetic analysis of succinate utilization in enzyme I mutants of the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli.
    Alexander JK; Tyler B
    J Bacteriol; 1975 Oct; 124(1):252-61. PubMed ID: 170246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system.
    Simoni RD; Roseman S; Saier MH
    J Biol Chem; 1976 Nov; 251(21):6584-97. PubMed ID: 789368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations affecting the dissimilation of mannitol by Escherichia coli K-12.
    Solomon E; Lin EC
    J Bacteriol; 1972 Aug; 111(2):566-74. PubMed ID: 4559737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the phosphoenolpyruvate-dependent fructose phosphotransferase system in the utilization of mannose by Escherichia coli.
    Kornberg HL; Lambourne LT
    Proc Biol Sci; 1992 Oct; 250(1327):51-5. PubMed ID: 1361062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promoter-like mutation affecting HPr and enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium.
    Cordaro JC; Anderson RP; Grogan EW; Wenzel DJ; Engler M; Roseman S
    J Bacteriol; 1974 Oct; 120(1):245-52. PubMed ID: 4608878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations affecting transport of the hexitols D-mannitol, D-glucitol, and galactitol in Escherichia coli K-12: isolation and mapping.
    Lengeler J
    J Bacteriol; 1975 Oct; 124(1):26-38. PubMed ID: 1100602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake of fructose by the sorbitol phosphotransferase of Escherichia coli K12.
    Jones-Mortimer MC; Kornberg HL
    J Gen Microbiol; 1976 Oct; 96(2):383-91. PubMed ID: 792388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of glucose phosphotransferase function in phosphofructokinase mutants of Escherichia coli.
    Roehl RA; Vinopal RT
    J Bacteriol; 1976 May; 126(2):852-60. PubMed ID: 177406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mycoplasma phosphoenolpyruvate-dependent sugar phosphotransferase system: glucose-negative mutant and regulation of intracellular cyclic AMP.
    Mugharbil U; Cirillo VP
    J Bacteriol; 1978 Jan; 133(1):203-9. PubMed ID: 201608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and genetic mapping of fructose phosphotransferase mutations in Pseudomonas aeruginosa.
    Roehl RA; Phibbs PV
    J Bacteriol; 1982 Mar; 149(3):897-905. PubMed ID: 6801014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetics of the bacterial phosphoenolpyruvate: glycose phosphotransferase system.
    Cordaro C
    Annu Rev Genet; 1976; 10():341-59. PubMed ID: 189682
    [No Abstract]   [Full Text] [Related]  

  • 12. Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase.
    Curtis SJ; Epstein W
    J Bacteriol; 1975 Jun; 122(3):1189-99. PubMed ID: 1097393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypic suppression of phosphofructokinase mutations in Escherichia coli by constitutive expression of the glyoxylate shunt.
    Vinopal RT; Fraenkel DG
    J Bacteriol; 1974 Jun; 118(3):1090-100. PubMed ID: 4275310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of succinate in Escherichia coli. I. Biochemical and genetic studies of transport in whole cells.
    Lo TC; Rayman MK; Sanwal BD
    J Biol Chem; 1972 Oct; 247(19):6323-31. PubMed ID: 4346810
    [No Abstract]   [Full Text] [Related]  

  • 15. Promoter-like mutant with increased expression of the glycerol kinase operon of Escherichia coli.
    Berman-Kurtz M; Lin EC; Richey DP
    J Bacteriol; 1971 Jun; 106(3):724-31. PubMed ID: 4934061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sugar phosphate:sugar transphosphorylation coupled to exchange group translocation catalyzed by the enzyme II complexes of the phosphoenolpyruvate:sugar phosphotransferase system in membrane vesicles of Escherichia coli.
    Saier MH; Cox DF; Moczydlowski EG
    J Biol Chem; 1977 Dec; 252(24):8908-16. PubMed ID: 336624
    [No Abstract]   [Full Text] [Related]  

  • 17. Involvement of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system in regulation of transcription of catabolic genes.
    Bolshakova TN; Gabrielyan TR; Bourd GI; Gershanovitch VN
    Eur J Biochem; 1978 Sep; 89(2):483-90. PubMed ID: 101372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vinylglycolic acid. An inactivator of the phosphoenolpyruvate-phosphate transferase system in Escherichia coli.
    Walsh CT; Kaback HR
    J Biol Chem; 1973 Aug; 248(15):5456-62. PubMed ID: 4588683
    [No Abstract]   [Full Text] [Related]  

  • 19. atp Mutants of Escherichia coli fail to grow on succinate due to a transport deficiency.
    Boogerd FC; Boe L; Michelsen O; Jensen PR
    J Bacteriol; 1998 Nov; 180(22):5855-9. PubMed ID: 9811641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inducible phosphoenolpyruvate-dependent hexose phosphotransferase activities in Escherichia coli.
    Kornberg HL; Reeves RE
    Biochem J; 1972 Aug; 128(5):1339-44. PubMed ID: 4345358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.