BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 17024849)

  • 1. Protoberberine alkaloids and their reversal activity of P-gp expressed multidrug resistance (MDR) from the rhizome of Coptis japonica Makino.
    Min YD; Yang MC; Lee KH; Kim KR; Choi SU; Lee KR
    Arch Pharm Res; 2006 Sep; 29(9):757-61. PubMed ID: 17024849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of limonoids and alkaloids from Phellodendron amurense and their multidrug resistance (MDR) reversal activity.
    Min YD; Kwon HC; Yang MC; Lee KH; Choi SU; Lee KR
    Arch Pharm Res; 2007 Jan; 30(1):58-63. PubMed ID: 17328243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective regulation of multidrug resistance protein in vascular smooth muscle cells by the isoquinoline alkaloid coptisine.
    Suzuki H; Tanabe H; Mizukami H; Inoue M
    Biol Pharm Bull; 2010; 33(4):677-82. PubMed ID: 20410605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rat lens aldose reductase inhibitory activities of Coptis japonica root-derived isoquinoline alkaloids.
    Lee HS
    J Agric Food Chem; 2002 Nov; 50(24):7013-6. PubMed ID: 12428952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aporphine alkaloids and their reversal activity of multidrug resistance (MDR) from the stems and rhizomes of Sinomenium acutum.
    Min YD; Choi SU; Lee KR
    Arch Pharm Res; 2006 Aug; 29(8):627-32. PubMed ID: 16964757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Analysis of the main components of coptis-evodia herb couple by HPLC-DAD-MS].
    Deng YT; Liao QF; Bi KS; Yao MC; Jiang XF; Xie ZY
    Yao Xue Xue Bao; 2008 Mar; 43(3):299-302. PubMed ID: 18630268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholinesterase inhibitory alkaloids from the rhizomes of Coptis chinensis.
    Cao TQ; Ngo QT; Seong SH; Youn UJ; Kim JA; Kim J; Kim JC; Woo MH; Choi JS; Min BS
    Bioorg Chem; 2018 Apr; 77():625-632. PubMed ID: 29502023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quality evaluation and species differentiation of Rhizoma coptidis by using proton nuclear magnetic resonance spectroscopy.
    Fan G; Zhang MY; Zhou XD; Lai XR; Yue QH; Tang C; Luo WZ; Zhang Y
    Anal Chim Acta; 2012 Oct; 747():76-83. PubMed ID: 22986138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new and weakly antispasmodic protoberberine alkaloid from Rhizoma Coptidis.
    Zhao M; Xian YF; Ip SP; Fong HH; Che CT
    Phytother Res; 2010 Sep; 24(9):1414-6. PubMed ID: 20564546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective inhibition of vascular smooth muscle cell proliferation by coptisine isolated from Coptis rhizoma, one of the crude drugs composing Kampo medicines Unsei-in.
    Tanabe H; Suzuki H; Nagatsu A; Mizukami H; Ogihara Y; Inoue M
    Phytomedicine; 2006 May; 13(5):334-42. PubMed ID: 16635741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased plasma exposures of five protoberberine alkaloids from Coptidis Rhizoma in streptozotocin-induced diabetic rats: is P-GP involved?
    Yu S; Yu Y; Liu L; Wang X; Lu S; Liang Y; Liu X; Xie L; Wang G
    Planta Med; 2010 Jun; 76(9):876-81. PubMed ID: 20108175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparative separation of quaternary ammonium alkaloids from Coptis chinensis Franch by pH-zone-refining counter-current chromatography.
    Sun C; Li J; Wang X; Duan W; Zhang T; Ito Y
    J Chromatogr A; 2014 Nov; 1370():156-61. PubMed ID: 25454140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic monitoring of the cytotoxic effects of protoberberine alkaloids from Rhizoma Coptidis on HepG2 cells using the xCELLigence system.
    Zhang LL; Ma LN; Yan D; Zhang CE; Gao D; Xiong Y; Sheng FY; Dong XP; Xiao XH
    Chin J Nat Med; 2014 Jun; 12(6):428-35. PubMed ID: 24969523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antiphotooxidative activity of protoberberines derived from Coptis japonica makino in the chlorophyll-sensitized photooxidation of oil.
    Kim JP; Jung MY; Kim JP; Kim SY
    J Agric Food Chem; 2000 Apr; 48(4):1058-63. PubMed ID: 10775349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth-inhibiting effects of Coptis japonica root-derived isoquinoline alkaloids on human intestinal bacteria.
    Chae SH; Jeong IH; Choi DH; Oh JW; Ahn YJ
    J Agric Food Chem; 1999 Mar; 47(3):934-8. PubMed ID: 10552394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical profiling of Coptis rootlet and screening of its bioactive compounds in inhibiting Staphylococcus aureus by UPLC-Q-TOF/MS.
    Hao Y; Huo J; Wang T; Sun G; Wang W
    J Pharm Biomed Anal; 2020 Feb; 180():113089. PubMed ID: 31901737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Simultaneous determination of six alkaloids in Coptis chinensis of different regions by RP-HPLC].
    Geng Z; Zheng H; Zhang Y; Luo W; Qu X
    Zhongguo Zhong Yao Za Zhi; 2010 Oct; 35(19):2576-80. PubMed ID: 21174768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hollow fiber cell fishing with high-performance liquid chromatography for rapid screening and analysis of an antitumor-active protoberberine alkaloid group from Coptis chinensis.
    Liu X; Hu S; Chen X; Bai X
    J Pharm Biomed Anal; 2014 Sep; 98():463-75. PubMed ID: 25023388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Establishment of the control substance of plant drug and fingerprints of Coptis chinensis].
    Qin HL; Li ZH; Wang P; Yang JR
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2004 Dec; 26(6):622-7. PubMed ID: 15663220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of 1H-NMR spectroscopy to validation of berberine alkaloid reagents and to chemical evaluation of Coptidis Rhizoma.
    Hasada K; Yoshida T; Yamazaki T; Sugimoto N; Nishimura T; Nagatsu A; Mizukami H
    J Nat Med; 2011 Apr; 65(2):262-7. PubMed ID: 21188644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.