These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 17025146)

  • 21. Dependence of InGaP nanowire morphology and structure on molecular beam epitaxy growth conditions.
    Fakhr A; Haddara YM; Lapierre RR
    Nanotechnology; 2010 Apr; 21(16):165601. PubMed ID: 20348594
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular beam epitaxial growth and characterization of catalyst-free InN/InxGa1-xN core/shell nanowire heterostructures on Si(111) substrates.
    Cui K; Fathololoumi S; Golam Kibria M; Botton GA; Mi Z
    Nanotechnology; 2012 Mar; 23(8):085205. PubMed ID: 22293649
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two- versus three-dimensional quantum confinement in indium phosphide wires and dots.
    Yu H; Li J; Loomis RA; Wang LW; Buhro WE
    Nat Mater; 2003 Aug; 2(8):517-20. PubMed ID: 12872161
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hexagonal geometric patterns formed by radial pore growth of InP based on Voronoi tessellation.
    Asoh H; Iwata J; Ono S
    Nanotechnology; 2012 Jun; 23(21):215304. PubMed ID: 22551644
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Au-free epitaxial growth of InAs nanowires.
    Mandl B; Stangl J; Mårtensson T; Mikkelsen A; Eriksson J; Karlsson LS; Bauer GU; Samuelson L; Seifert W
    Nano Lett; 2006 Aug; 6(8):1817-21. PubMed ID: 16895379
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The scaling of the effective band gaps in indium-arsenide quantum dots and wires.
    Wang F; Yu H; Jeong S; Pietryga JM; Hollingsworth JA; Gibbons PC; Buhro WE
    ACS Nano; 2008 Sep; 2(9):1903-13. PubMed ID: 19206431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoluminescence and optical limiting properties of silicon nanowires.
    Pan H; Chen W; Lim SH; Poh CK; Wu X; Feng Y; Ji W; Lin J
    J Nanosci Nanotechnol; 2005 May; 5(5):733-7. PubMed ID: 16010930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electron trapping in InP nanowire FETs with stacking faults.
    Wallentin J; Ek M; Wallenberg LR; Samuelson L; Borgström MT
    Nano Lett; 2012 Jan; 12(1):151-5. PubMed ID: 22149329
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication and characterization of three-dimensional InGaAs/GaAs nanosprings.
    Bell DJ; Dong L; Nelson BJ; Golling M; Zhang L; Grützmacher D
    Nano Lett; 2006 Apr; 6(4):725-9. PubMed ID: 16608272
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Manipulation of electron orbitals in hard-wall InAs/InP nanowire quantum dots.
    Roddaro S; Pescaglini A; Ercolani D; Sorba L; Beltram F
    Nano Lett; 2011 Apr; 11(4):1695-9. PubMed ID: 21446718
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of strongly degenerate electron-hole plasmas and excitons in single InP nanowires.
    Titova LV; Hoang TB; Yarrison-Rice JM; Jackson HE; Kim Y; Joyce HJ; Gao Q; Tan HH; Jagadish C; Zhang X; Zou J; Smith LM
    Nano Lett; 2007 Nov; 7(11):3383-7. PubMed ID: 17902724
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanostructures of Sn and their enhanced, shape-dependent superconducting properties.
    Hsu YJ; Lu SY; Lin YF
    Small; 2006 Feb; 2(2):268-73. PubMed ID: 17193034
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation and characterization of silica-coated indium oxide nanoparticles.
    Zhang M; Shi L; O'Connor CJ
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5720-4. PubMed ID: 19198295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of nanowire density on the shape and optical properties of ternary InGaAs nanowires.
    Kim Y; Joyce HJ; Gao Q; Tan HH; Jagadish C; Paladugu M; Zou J; Suvorova AA
    Nano Lett; 2006 Apr; 6(4):599-604. PubMed ID: 16608251
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of ordered arrays of InP microstructures by wet chemical etching with Au masks.
    Su G; Guo Q; Palmer RE
    J Nanosci Nanotechnol; 2002 Dec; 2(6):627-30. PubMed ID: 12908426
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GaAs core--shell nanowires for photovoltaic applications.
    Czaban JA; Thompson DA; LaPierre RR
    Nano Lett; 2009 Jan; 9(1):148-54. PubMed ID: 19143502
    [TBL] [Abstract][Full Text] [Related]  

  • 37. VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures.
    Tateno K; Zhang G; Gotoh H; Sogawa T
    Nano Lett; 2012 Jun; 12(6):2888-93. PubMed ID: 22594554
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth, photoluminescence, and field emission of hierarchical ZnO nanostructures.
    Xu F; Yu K; Shi M; Wang Q; Zhu Z; Huang S
    J Nanosci Nanotechnol; 2006 Dec; 6(12):3794-8. PubMed ID: 17256332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transformation of self-assembled InAs/InP quantum dots into quantum rings without capping.
    Sormunen J; Riikonen J; Mattila M; Tiilikainen J; Sopanen M; Lipsanen H
    Nano Lett; 2005 Aug; 5(8):1541-3. PubMed ID: 16089485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing strain in bent semiconductor nanowires with Raman spectroscopy.
    Chen J; Conache G; Pistol ME; Gray SM; Borgström MT; Xu H; Xu HQ; Samuelson L; Håkanson U
    Nano Lett; 2010 Apr; 10(4):1280-6. PubMed ID: 20192231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.