BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 17025352)

  • 1. Thermoreversible protein hydrogel as cell scaffold.
    Yan H; Saiani A; Gough JE; Miller AF
    Biomacromolecules; 2006 Oct; 7(10):2776-82. PubMed ID: 17025352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel living cell sheet harvest system composed of thermoreversible methylcellulose hydrogels.
    Chen CH; Tsai CC; Chen W; Mi FL; Liang HF; Chen SC; Sung HW
    Biomacromolecules; 2006 Mar; 7(3):736-43. PubMed ID: 16529408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermo-reversible protein fibrillar hydrogels as cell scaffolds.
    Yan H; Nykanen A; Ruokolainen J; Farrar D; Gough JE; Saiani A; Miller AF
    Faraday Discuss; 2008; 139():71-84; discussion 105-28, 419-20. PubMed ID: 19048991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-structured smart hydrogels with enhanced protein loading and release efficiency.
    Zhang JT; Petersen S; Thunga M; Leipold E; Weidisch R; Liu X; Fahr A; Jandt KD
    Acta Biomater; 2010 Apr; 6(4):1297-306. PubMed ID: 19913647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding, self-assembly, and bulk material properties of a de novo designed three-stranded beta-sheet hydrogel.
    Rughani RV; Salick DA; Lamm MS; Yucel T; Pochan DJ; Schneider JP
    Biomacromolecules; 2009 May; 10(5):1295-304. PubMed ID: 19344123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ thermal gelling polypeptide for chondrocytes 3D culture.
    Choi BG; Park MH; Cho SH; Joo MK; Oh HJ; Kim EH; Park K; Han DK; Jeong B
    Biomaterials; 2010 Dec; 31(35):9266-72. PubMed ID: 20864172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytocompatibility of self-assembled beta-hairpin peptide hydrogel surfaces.
    Kretsinger JK; Haines LA; Ozbas B; Pochan DJ; Schneider JP
    Biomaterials; 2005 Sep; 26(25):5177-86. PubMed ID: 15792545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels.
    Suri S; Schmidt CE
    Acta Biomater; 2009 Sep; 5(7):2385-97. PubMed ID: 19446050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-dependent behavior of a symmetric long-chain bolaamphiphile with phosphocholine headgroups in water: from hydrogel to nanoparticles.
    Köhler K; Förster G; Hauser A; Dobner B; Heiser UF; Ziethe F; Richter W; Steiniger F; Drechsler M; Stettin H; Blume A
    J Am Chem Soc; 2004 Dec; 126(51):16804-13. PubMed ID: 15612719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphology and gelation of thermosensitive xyloglucan hydrogels.
    Nisbet DR; Crompton KE; Hamilton SD; Shirakawa S; Prankerd RJ; Finkelstein DI; Horne MK; Forsythe JS
    Biophys Chem; 2006 Apr; 121(1):14-20. PubMed ID: 16406645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulus-responsive hydrogels made from biosynthetic fibrinogen conjugates for tissue engineering: structural characterization.
    Frisman I; Shachaf Y; Seliktar D; Bianco-Peled H
    Langmuir; 2011 Jun; 27(11):6977-86. PubMed ID: 21542599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A collagen peptide-based physical hydrogel for cell encapsulation.
    Pérez CM; Panitch A; Chmielewski J
    Macromol Biosci; 2011 Oct; 11(10):1426-31. PubMed ID: 21830301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-step protocol to incorporate cells in thermoresponsive hydrogels.
    Sawant PD; Achuth HN; Moochhala SM
    Biotechnol J; 2006 Apr; 1(4):462-5. PubMed ID: 16892274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introducing chemical functionality in Fmoc-peptide gels for cell culture.
    Jayawarna V; Richardson SM; Hirst AR; Hodson NW; Saiani A; Gough JE; Ulijn RV
    Acta Biomater; 2009 Mar; 5(3):934-43. PubMed ID: 19249724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration.
    DeLong SA; Moon JJ; West JL
    Biomaterials; 2005 Jun; 26(16):3227-34. PubMed ID: 15603817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibrous crystalline hydrogels formed from polymers possessing a linear poly(ethyleneimine) backbone.
    Yuan JJ; Jin RH
    Langmuir; 2005 Mar; 21(7):3136-45. PubMed ID: 15779996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemoglobin recognition by imprinting in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan.
    Xia YQ; Guo TY; Song MD; Zhang BH; Zhang BL
    Biomacromolecules; 2005; 6(5):2601-6. PubMed ID: 16153097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A saccharide-based supramolecular hydrogel for cell culture.
    Wang W; Wang H; Ren C; Wang J; Tan M; Shen J; Yang Z; Wang PG; Wang L
    Carbohydr Res; 2011 Jun; 346(8):1013-7. PubMed ID: 21482421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of chemistry and morphology on the biofunctionality of self-assembling diblock copolypeptide hydrogels.
    Pakstis LM; Ozbas B; Hales KD; Nowak AP; Deming TJ; Pochan D
    Biomacromolecules; 2004; 5(2):312-8. PubMed ID: 15002989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoreversible lysozyme hydrogels: properties and an insight into the gelation pathway.
    Yan H; Frielinghaus H; Nykanen A; Ruokolainen J; Saiani A; Miller AF
    Soft Matter; 2008 May; 4(6):1313-1325. PubMed ID: 32907277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.