These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 17025359)
1. Controlling network structure in degradable thiol-acrylate biomaterials to tune mass loss behavior. Rydholm AE; Reddy SK; Anseth KS; Bowman CN Biomacromolecules; 2006 Oct; 7(10):2827-36. PubMed ID: 17025359 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and characterization of cyclic acetal based degradable hydrogels. Kaihara S; Matsumura S; Fisher JP Eur J Pharm Biopharm; 2008 Jan; 68(1):67-73. PubMed ID: 17888640 [TBL] [Abstract][Full Text] [Related]
3. Degradable thiol-acrylate photopolymers: polymerization and degradation behavior of an in situ forming biomaterial. Rydholm AE; Bowman CN; Anseth KS Biomaterials; 2005 Aug; 26(22):4495-506. PubMed ID: 15722118 [TBL] [Abstract][Full Text] [Related]
4. Photopolymerizable thiol-acrylate maleiated hyaluronic acid/thiol-terminated poly(ethylene glycol) hydrogels as potential in-situ formable scaffolds. Zhang C; Dong Q; Liang K; Zhou D; Yang H; Liu X; Xu W; Zhou Y; Xiao P Int J Biol Macromol; 2018 Nov; 119():270-277. PubMed ID: 30055272 [TBL] [Abstract][Full Text] [Related]
5. Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture. Hao Y; Shih H; Muňoz Z; Kemp A; Lin CC Acta Biomater; 2014 Jan; 10(1):104-14. PubMed ID: 24021231 [TBL] [Abstract][Full Text] [Related]
6. Thiol/acrylate-modified PEO-PPO-PEO triblocks used as reactive and thermosensitive copolymers. Niu G; Zhang H; Song L; Cui X; Cao H; Zheng Y; Zhu S; Yang Z; Yang H Biomacromolecules; 2008 Oct; 9(10):2621-8. PubMed ID: 18710282 [TBL] [Abstract][Full Text] [Related]
7. Degradable thiol-acrylate hydrogels as tunable matrices for three-dimensional hepatic culture. Hao Y; Lin CC J Biomed Mater Res A; 2014 Nov; 102(11):3813-27. PubMed ID: 24288169 [TBL] [Abstract][Full Text] [Related]
8. Towards a fully-synthetic substitute of alginate: development of a new process using thermal gelation and chemical cross-linking. Cellesi F; Tirelli N; Hubbell JA Biomaterials; 2004 Sep; 25(21):5115-24. PubMed ID: 15109835 [TBL] [Abstract][Full Text] [Related]
9. Technique of surface modification of a cell-adhesion-resistant hydrogel by a cell-adhesion-available inorganic microarray. Sun J; Graeter SV; Yu L; Duan S; Spatz JP; Ding J Biomacromolecules; 2008 Oct; 9(10):2569-72. PubMed ID: 18646821 [TBL] [Abstract][Full Text] [Related]
10. Modifying network chemistry in thiol-acrylate photopolymers through postpolymerization functionalization to control cell-material interactions. Rydholm AE; Held NL; Benoit DS; Bowman CN; Anseth KS J Biomed Mater Res A; 2008 Jul; 86(1):23-30. PubMed ID: 17941011 [TBL] [Abstract][Full Text] [Related]
12. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol. Brink KS; Yang PJ; Temenoff JS Acta Biomater; 2009 Feb; 5(2):570-9. PubMed ID: 18948068 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and characterization of in situ chitosan-based hydrogel via grafting of carboxyethyl acrylate. Kim MS; Choi YJ; Noh I; Tae G J Biomed Mater Res A; 2007 Dec; 83(3):674-82. PubMed ID: 17530630 [TBL] [Abstract][Full Text] [Related]
14. Effect of poly(ethylene glycol) diacrylate concentration on network properties and in vivo response of poly(β-amino ester) networks. Safranski DL; Weiss D; Clark JB; Caspersen BS; Taylor WR; Gall K J Biomed Mater Res A; 2011 Feb; 96(2):320-9. PubMed ID: 21171151 [TBL] [Abstract][Full Text] [Related]
15. Network formation and degradation behavior of hydrogels formed by Michael-type addition reactions. Metters A; Hubbell J Biomacromolecules; 2005; 6(1):290-301. PubMed ID: 15638532 [TBL] [Abstract][Full Text] [Related]
16. Designing Visible Light-Cured Thiol-Acrylate Hydrogels for Studying the HIPPO Pathway Activation in Hepatocellular Carcinoma Cells. Lin TY; Bragg JC; Lin CC Macromol Biosci; 2016 Apr; 16(4):496-507. PubMed ID: 26709469 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and characterization of thiol-acrylate hydrogels using a base-catalyzed Michael addition for 3D cell culture applications. Khan AH; Cook JK; Wortmann WJ; Kersker ND; Rao A; Pojman JA; Melvin AT J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2294-2307. PubMed ID: 31961056 [TBL] [Abstract][Full Text] [Related]
18. Cross-linking and degradation of step-growth hydrogels formed by thiol-ene photoclick chemistry. Shih H; Lin CC Biomacromolecules; 2012 Jul; 13(7):2003-12. PubMed ID: 22708824 [TBL] [Abstract][Full Text] [Related]
19. Improving gelation efficiency and cytocompatibility of visible light polymerized thiol-norbornene hydrogels via addition of soluble tyrosine. Shih H; Liu HY; Lin CC Biomater Sci; 2017 Feb; 5(3):589-599. PubMed ID: 28174779 [TBL] [Abstract][Full Text] [Related]
20. Gelation Kinetics and Mechanical Properties of Thiol-Tetrazole Methylsulfone Hydrogels Designed for Cell Encapsulation. de Miguel-Jiménez A; Ebeling B; Paez JI; Fink-Straube C; Pearson S; Del Campo A Macromol Biosci; 2023 Feb; 23(2):e2200419. PubMed ID: 36457236 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]