These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

532 related articles for article (PubMed ID: 17025390)

  • 1. Phase diagram and commensurate-incommensurate transitions in the phase field crystal model with an external pinning potential.
    Achim CV; Karttunen M; Elder KR; Granato E; Ala-Nissila T; Ying SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021104. PubMed ID: 17025390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal fluctuations and phase diagrams of the phase-field crystal model with pinning.
    Ramos JA; Granato E; Achim CV; Ying SC; Elder KR; Ala-Nissila T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031109. PubMed ID: 18850995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear driven response of a phase-field crystal in a periodic pinning potential.
    Achim CV; Ramos JA; Karttunen M; Elder KR; Granato E; Ala-Nissila T; Ying SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011606. PubMed ID: 19257044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical transitions and sliding friction of the phase-field-crystal model with pinning.
    Ramos JA; Granato E; Ying SC; Achim CV; Elder KR; Ala-Nissila T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011121. PubMed ID: 20365337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glassy phases and driven response of the phase-field-crystal model with random pinning.
    Granato E; Ramos JA; Achim CV; Lehikoinen J; Ying SC; Ala-Nissila T; Elder KR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031102. PubMed ID: 22060323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase transitions of colloidal monolayers in periodic pinning arrays.
    Mangold K; Leiderer P; Bechinger C
    Phys Rev Lett; 2003 Apr; 90(15):158302. PubMed ID: 12732078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Commensurate two-component bosons in an optical lattice: ground state phase diagram.
    Kuklov A; Prokof'ev N; Svistunov B
    Phys Rev Lett; 2004 Feb; 92(5):050402. PubMed ID: 14995288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum phase transitions and phase diagram for a one-dimensional p-wave superconductor with an incommensurate potential.
    Cai X
    J Phys Condens Matter; 2014 Apr; 26(15):155701. PubMed ID: 24675766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vortex lattice structural transitions: a Ginzburg-Landau model approach.
    Klironomos AD; Dorsey AT
    Phys Rev Lett; 2003 Aug; 91(9):097002. PubMed ID: 14525203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-field-crystal model for fcc ordering.
    Wu KA; Adland A; Karma A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061601. PubMed ID: 20866425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Commensurate supersolid of three-dimensional lattice bosons.
    Ohgoe T; Suzuki T; Kawashima N
    Phys Rev Lett; 2012 May; 108(18):185302. PubMed ID: 22681086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective and accurate approach for modeling of commensurate-incommensurate transition in krypton monolayer on graphite.
    Ustinov EA
    J Chem Phys; 2014 Oct; 141(13):134706. PubMed ID: 25296827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of the commensurate and incommensurate magnetic phases of the S = 3/2 kagome staircase Co₃V₂O₈ in an applied field.
    Helton JS; Chen Y; Bychkov GL; Barilo SN; Rogado N; Cava RJ; Lynn JW
    J Phys Condens Matter; 2012 Jan; 24(1):016003. PubMed ID: 22155985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field-induced phase transitions of repulsive spin-1 bosons in optical lattices.
    Rodríguez K; Argüelles A; Kolezhuk AK; Santos L; Vekua T
    Phys Rev Lett; 2011 Mar; 106(10):105302. PubMed ID: 21469799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nematic phase in the J(1)-J(2) square-lattice Ising model in an external field.
    Guerrero AI; Stariolo DA; Almarza NG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052123. PubMed ID: 26066135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicted mobility edges in one-dimensional incommensurate optical lattices: an exactly solvable model of anderson localization.
    Biddle J; Das Sarma S
    Phys Rev Lett; 2010 Feb; 104(7):070601. PubMed ID: 20366867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hartree-Fock ground state phase diagram of jellium.
    Baguet L; Delyon F; Bernu B; Holzmann M
    Phys Rev Lett; 2013 Oct; 111(16):166402. PubMed ID: 24182285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phases of a triangular-lattice antiferromagnet near saturation.
    Starykh OA; Jin W; Chubukov AV
    Phys Rev Lett; 2014 Aug; 113(8):087204. PubMed ID: 25192123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Commensurate-incommensurate transition of cold atoms in an optical lattice.
    Büchler HP; Blatter G; Zwerger W
    Phys Rev Lett; 2003 Apr; 90(13):130401. PubMed ID: 12689270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topological superconductor to Anderson localization transition in one-dimensional incommensurate lattices.
    Cai X; Lang LJ; Chen S; Wang Y
    Phys Rev Lett; 2013 Apr; 110(17):176403. PubMed ID: 23679750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.