These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 17025396)

  • 1. Force distribution in a randomly perturbed lattice of identical particles with 1/r2 pair interaction.
    Gabrielli A; Baertschiger T; Joyce M; Marcos B; Labini FS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021110. PubMed ID: 17025396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gravitational dynamics of an infinite shuffled lattice of particles.
    Baertschiger T; Joyce M; Gabrielli A; Labini FS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021113. PubMed ID: 17358319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gravitational force in weakly correlated particle spatial distributions.
    Gabrielli A; Masucci AP; Labini FS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031110. PubMed ID: 15089268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gravitational dynamics of an infinite shuffled lattice: early time evolution and universality of nonlinear correlations.
    Baertschiger T; Joyce M; Labini FS; Marcos B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051114. PubMed ID: 18643033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-dimensional gravity in infinite point distributions.
    Gabrielli A; Joyce M; Sicard F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041108. PubMed ID: 19905274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gravitational evolution of a perturbed lattice and its fluid limit.
    Joyce M; Marcos B; Gabrielli A; Baertschiger T; Sylos Labini F
    Phys Rev Lett; 2005 Jul; 95(1):011304. PubMed ID: 16090603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scale invariant forces in one-dimensional shuffled lattices.
    Gabrielli A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066113. PubMed ID: 16486016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gravitational dynamics of an infinite shuffled lattice: Particle coarse-graining, nonlinear clustering, and the continuum limit.
    Baertschiger T; Joyce M; Gabrielli A; Sylos Labini F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011116. PubMed ID: 17677419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gravitational force in an infinite one-dimensional Poisson distribution.
    Gabrielli A; Joyce M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021102. PubMed ID: 20365525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloidal systems in three-dimensional microchannels: lattice control via channel width and external force.
    Schwierz N; Nielaba P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031401. PubMed ID: 21230071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lattice summations for spread out particles: applications to neutral and charged systems.
    Heyes DM; Brańka AC
    J Chem Phys; 2013 Jan; 138(3):034504. PubMed ID: 23343282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probability density function model equation for particle charging in a homogeneous dusty plasma.
    Pandya RV; Mashayek F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036405. PubMed ID: 11580452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloaking the underlying long-range order of randomly perturbed lattices.
    Klatt MA; Kim J; Torquato S
    Phys Rev E; 2020 Mar; 101(3-1):032118. PubMed ID: 32289999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of the extended RSA models in studies of particle deposition at partially covered surfaces.
    Weroński P
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):1-24. PubMed ID: 16084783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Random transitions described by the stochastic Smoluchowski-Poisson system and by the stochastic Keller-Segel model.
    Chavanis PH; Delfini L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032139. PubMed ID: 24730821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density profiles of a self-gravitating lattice gas in one, two, and three dimensions.
    Bakhti B; Boukari D; Karbach M; Maass P; Müller G
    Phys Rev E; 2018 Apr; 97(4-1):042131. PubMed ID: 29758704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective Hamiltonians for Rapidly Driven Many-Body Lattice Systems: Induced Exchange Interactions and Density-Dependent Hoppings.
    Itin AP; Katsnelson MI
    Phys Rev Lett; 2015 Aug; 115(7):075301. PubMed ID: 26317726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coarse-grained lattice kinetic Monte Carlo simulation of systems of strongly interacting particles.
    Dai J; Seider WD; Sinno T
    J Chem Phys; 2008 May; 128(19):194705. PubMed ID: 18500884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pair approximation for lattice models with multiple interaction scales.
    Ellner SP
    J Theor Biol; 2001 Jun; 210(4):435-47. PubMed ID: 11403564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-body dynamics in a (1+1) -dimensional relativistic self-gravitating system.
    Malecki JJ; Mann RB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066208. PubMed ID: 15244709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.