These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 17025425)

  • 21. An accurate von Neumann's law for three-dimensional foams.
    Hilgenfeldt S; Kraynik AM; Koehler SA; Stone HA
    Phys Rev Lett; 2001 Mar; 86(12):2685-8. PubMed ID: 11290011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Statistics of bubble rearrangement dynamics in a coarsening foam.
    Gittings AS; Durian DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 2):066313. PubMed ID: 19256951
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flow transitions in two-dimensional foams.
    Gilbreth C; Sullivan S; Dennin M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051406. PubMed ID: 17279908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stray-field NMR diffusion q-space diffraction imaging of monodisperse coarsening foams.
    Smith K; Burbidge A; Apperley D; Hodgkinson P; Markwell FA; Topgaard D; Hughes E
    J Colloid Interface Sci; 2016 Aug; 476():20-28. PubMed ID: 27179175
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamical transition in a jammed state of a quasi-two-dimensional foam.
    Kurita R; Furuta Y; Yanagisawa N; Oikawa N
    Phys Rev E; 2017 Jun; 95(6-1):062613. PubMed ID: 28709314
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Statistics of shear-induced rearrangements in a two-dimensional model foam.
    Tewari S; Schiemann D; Durian DJ; Knobler CM; Langer SA; Liu AJ
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt B):4385-96. PubMed ID: 11970293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Duration of bubble rearrangements in a coarsening foam probed by time-resolved diffusing-wave spectroscopy: impact of interfacial rigidity.
    Le Merrer M; Cohen-Addad S; Höhler R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022303. PubMed ID: 24032829
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced drainage and coarsening in aqueous foams.
    Vera MU; Durian DJ
    Phys Rev Lett; 2002 Feb; 88(8):088304. PubMed ID: 11863979
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Finding robust descriptive features for the characterization of the coarsening dynamics of three dimensional whey protein foams.
    Dittmann J; Eggert A; Lambertus M; Dombrowski J; Rack A; Zabler S
    J Colloid Interface Sci; 2016 Apr; 467():148-157. PubMed ID: 26802273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of coarsening and bubble formation in high-genus nanoporous metals.
    Erlebacher J
    Phys Rev Lett; 2011 Jun; 106(22):225504. PubMed ID: 21702615
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of random foam.
    Kraynik AM; Reinelt DA; van Swol F
    Phys Rev Lett; 2004 Nov; 93(20):208301. PubMed ID: 15600978
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chaotic bubbling and nonstagnant foams.
    Tufaile A; Sartorelli JC; Jeandet P; Liger-Belair G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066216. PubMed ID: 17677349
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of structured heterogeneities on reactive two-phase porous flow.
    Reeves D; Rothman DH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031120. PubMed ID: 23030879
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Breakup of bubbles and drops in steadily sheared foams and concentrated emulsions.
    Golemanov K; Tcholakova S; Denkov ND; Ananthapadmanabhan KP; Lips A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051405. PubMed ID: 19113128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Specific surface area model for foam permeability.
    Pitois O; Lorenceau E; Louvet N; Rouyer F
    Langmuir; 2009 Jan; 25(1):97-100. PubMed ID: 19032030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emergence of foams from the breakdown of the phase field crystal model.
    Guttenberg N; Goldenfeld N; Dantzig J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):065301. PubMed ID: 20866468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissipative flows of 2D foams.
    Cantat I; Delannay R
    Eur Phys J E Soft Matter; 2005 Sep; 18(1):55-67. PubMed ID: 16208436
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonequilibrium dynamics of random field Ising spin chains: exact results via real space renormalization group.
    Fisher DS; Le Doussal P; Monthus C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066107. PubMed ID: 11736236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finite-size scaling at the first-order quantum transitions of quantum Potts chains.
    Campostrini M; Nespolo J; Pelissetto A; Vicari E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052103. PubMed ID: 26066115
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sclerosant foam structure and stability is strongly influenced by liquid air fraction.
    Cameron E; Chen T; Connor DE; Behnia M; Parsi K
    Eur J Vasc Endovasc Surg; 2013 Oct; 46(4):488-94. PubMed ID: 23993276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.