These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 17025425)

  • 41. Scaling regimes of thermocapillarity-driven dynamics of confined long bubbles: Effects of disjoining pressure.
    Chaudhury K; Chakraborty S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033021. PubMed ID: 25871216
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Universal anisotropic finite-size critical behavior of the two-dimensional Ising model on a strip and of d-dimensional models on films.
    Kastening B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041105. PubMed ID: 23214527
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The size of films in dry foams.
    Tong M; Neethling SJ
    J Phys Condens Matter; 2010 Apr; 22(15):155109. PubMed ID: 21389554
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coarsening dynamics of the one-dimensional Cahn-Hilliard model.
    Argentina M; Clerc MG; Rojas R; Tirapegui E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046210. PubMed ID: 15903773
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Geometrical properties of the Potts model during the coarsening regime.
    Loureiro MP; Arenzon JJ; Cugliandolo LF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021135. PubMed ID: 22463180
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intraalveolar bubbles and bubble films: II. Formation in vivo through adulthood.
    Scarpelli EM; Mautone AJ; DeFouw DO; Clutario BC
    Anat Rec; 1996 Oct; 246(2):245-70. PubMed ID: 8888967
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Foam coarsening under a steady shear: interplay between bubble rearrangement and film thinning dynamics.
    Saint-Jalmes A; Trégouët C
    Soft Matter; 2023 Mar; 19(11):2090-2098. PubMed ID: 36853265
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lower bounds for the surface energy of two-dimensional foams.
    Teixeira PI; Graner F; Fortes MA
    Eur Phys J E Soft Matter; 2002 Dec; 9(5):447-52. PubMed ID: 15011092
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cascades of popping bubbles along air/foam interfaces.
    Vandewalle N; Lentz JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021507. PubMed ID: 11497589
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Smectic foams.
    Trittel T; John T; Stannarius R
    Langmuir; 2010 Jun; 26(11):7899-904. PubMed ID: 20180603
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Size segregation in sheared two-dimensional polydisperse foam.
    Mohammadigoushki H; Feng JJ
    Langmuir; 2013 Feb; 29(5):1370-8. PubMed ID: 23294450
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ostwald ripening in multiple-bubble nuclei.
    Watanabe H; Suzuki M; Inaoka H; Ito N
    J Chem Phys; 2014 Dec; 141(23):234703. PubMed ID: 25527953
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hysteresis and avalanches in two-dimensional foam rheology simulations.
    Jiang Y; Swart PJ; Saxena A; Asipauskas M; Glazier JA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5819-32. PubMed ID: 11969562
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Parallel multicanonical study of the three-dimensional Blume-Capel model.
    Zierenberg J; Fytas NG; Janke W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032126. PubMed ID: 25871073
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Foam flow in a model porous medium: I. The effect of foam coarsening.
    Jones SA; Getrouw N; Vincent-Bonnieu S
    Soft Matter; 2018 May; 14(18):3490-3496. PubMed ID: 29392252
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bubble rearrangement duration in foams near the jamming point.
    Le Merrer M; Cohen-Addad S; Höhler R
    Phys Rev Lett; 2012 May; 108(18):188301. PubMed ID: 22681122
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bubble evolution and properties in homogeneous nucleation simulations.
    Angélil R; Diemand J; Tanaka KK; Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063301. PubMed ID: 25615216
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microcanonical determination of the interface tension of flat and curved interfaces from Monte Carlo simulations.
    Tröster A; Binder K
    J Phys Condens Matter; 2012 Jul; 24(28):284107. PubMed ID: 22738832
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Direct simulations of homogeneous bubble nucleation: Agreement with classical nucleation theory and no local hot spots.
    Diemand J; Angélil R; Tanaka KK; Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052407. PubMed ID: 25493803
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Correlation between transient shear experiments and structure evolution of aqueous foams.
    Herzhaft B
    J Colloid Interface Sci; 2002 Mar; 247(2):412-23. PubMed ID: 16290482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.