These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 17025553)

  • 1. Wide-angle coupling into rod-type photonic crystals with ultralow reflectance.
    Botten LC; White TP; de Sterke CM; McPhedran RC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026603. PubMed ID: 17025553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct wide-angle measurement of a photonic band structure in a three-dimensional photonic crystal using infrared Fourier imaging spectroscopy.
    Chen L; Lopez-Garcia M; Taverne MP; Zheng X; Ho YD; Rarity J
    Opt Lett; 2017 Apr; 42(8):1584-1587. PubMed ID: 28409804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wide-angle reflection-mode spatial filtering and splitting with photonic crystal gratings and single-layer rod gratings.
    Serebryannikov AE; Lalanne P; Petrov AY; Ozbay E
    Opt Lett; 2014 Nov; 39(21):6193-6. PubMed ID: 25361312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric Mach-Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals.
    Kim TT; Lee SG; Park HY; Kim JE; Kee CS
    Opt Express; 2010 Mar; 18(6):5384-9. PubMed ID: 20389553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ring-type Fabry-Pérot filter based on the self-collimation effect in a 2D photonic crystal.
    Kim TT; Lee SG; Kim SH; Kim JE; Park HY; Kee CS
    Opt Express; 2010 Aug; 18(16):17106-13. PubMed ID: 20721099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of one-dimensional photonic crystals based on the incident angle domain.
    Huang B; Gu P; Yang L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046601. PubMed ID: 14683059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photonic bandgaps of different unit cells in the basic structural unit of germanium-based two-dimensional decagonal photonic quasi-crystals.
    Liu J; Fan Z; Xiao H; Zhang W; Guan C; Yuan L
    Appl Opt; 2011 Aug; 50(24):4868-72. PubMed ID: 21857712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarization-insensitive and broad-angle self-collimation in a two-dimensional photonic crystal with rectangular air holes.
    Jiang L; Wu H; Li X
    Appl Opt; 2013 Sep; 52(27):6676-84. PubMed ID: 24085166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cherenkov effect as a probe of photonic nanostructures.
    García de Abajo FJ; Pattantyus-Abraham AG; Zabala N; Rivacoba A; Wolf MO; Echenique PM
    Phys Rev Lett; 2003 Oct; 91(14):143902. PubMed ID: 14611524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband large-angle self-collimation in two-dimensional silicon photonic crystal.
    Gan L; Qin F; Li ZY
    Opt Lett; 2012 Jun; 37(12):2412-4. PubMed ID: 22739925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bloch mode scattering matrix methods for modeling extended photonic crystal structures. II. Applications.
    White TP; Botten LC; de Sterke CM; McPhedran RC; Asatryan AA; Langtry TN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056607. PubMed ID: 15600779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional photonic crystals constructed with a portion of photonic quasicrystals.
    Yang Y; Wang GP
    Opt Express; 2007 May; 15(10):5991-6. PubMed ID: 19546901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies.
    Degirmenci E; Landais P
    Appl Opt; 2013 Oct; 52(30):7367-75. PubMed ID: 24216592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite-size limitations on Quality factor of guided resonance modes in 2D photonic crystals.
    Grepstad JO; Greve MM; Holst B; Johansen IR; Solgaard O; Sudbø A
    Opt Express; 2013 Oct; 21(20):23640-54. PubMed ID: 24104276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals.
    Tanaka Y; Kawamoto Y; Fujita M; Noda S
    Opt Express; 2013 Aug; 21(17):20111-8. PubMed ID: 24105557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Band-gap engineering in two-dimensional semiconductor-dielectric photonic crystals.
    Kushwaha MS; Martinez G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):027601. PubMed ID: 15783461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband self-collimation in C2 symmetric photonic crystals.
    Gumus M; Giden IH; Kurt H
    Opt Lett; 2018 Jun; 43(11):2555-2558. PubMed ID: 29856428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broad-angle coherent perfect absorption-lasing and super-collimation in two-dimensional non-Hermitian photonic crystals.
    Xu C; Ahmed WW; Wu Y
    Opt Express; 2023 Jan; 31(2):2112-2119. PubMed ID: 36785232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-collimated waveguide bends and partial bandgap reflection of photonic crystals with parallelogram lattice.
    Gao D; Zhou Z; Citrin DS
    J Opt Soc Am A Opt Image Sci Vis; 2008 Mar; 25(3):791-5. PubMed ID: 18311251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling light into a slow-light photonic-crystal waveguide from a free-space normally-incident beam.
    Hamel P; Grinberg P; Sauvan C; Lalanne P; Baron A; Yacomotti AM; Sagnes I; Raineri F; Bencheikh K; Levenson JA
    Opt Express; 2013 Jul; 21(13):15144-54. PubMed ID: 23842301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.