These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 17025560)

  • 1. Statics and dynamics of Bose-Einstein condensates in double square well potentials.
    Infeld E; Ziń P; Gocałek J; Trippenbach M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026610. PubMed ID: 17025560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stationary solutions for the nonlinear Schrödinger equation modeling three-dimensional spherical Bose-Einstein condensates in general potentials.
    Mallory K; Van Gorder RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013201. PubMed ID: 26274295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stationary solutions for the 1+1 nonlinear Schrödinger equation modeling repulsive Bose-Einstein condensates in small potentials.
    Mallory K; Van Gorder RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013205. PubMed ID: 23944574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of repulsive Bose-Einstein condensates in a periodic potential.
    Bronski JC; Carr LD; Deconinck B; Kutz JN; Promislow K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036612. PubMed ID: 11308793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stationary solutions for the 1+1 nonlinear Schrödinger equation modeling attractive Bose-Einstein condensates in small potentials.
    Mallory K; Van Gorder RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013204. PubMed ID: 24580353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stationary solutions for the 2+1 nonlinear Schrödinger equation modeling Bose-Einstein condensates in radial potentials.
    Mallory K; Van Gorder RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023201. PubMed ID: 25215837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of stationary states in the cubic nonlinear Schrödinger equation: applications to the Bose-Einstein condensate.
    Carr LD; Kutz JN; Reinhardt WP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066604. PubMed ID: 11415239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bose-Einstein condensates in the presence of a magnetic trap and optical lattice.
    Kapitula T; Kevrekidis PG
    Chaos; 2005 Sep; 15(3):37114. PubMed ID: 16253009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of attractive Bose-Einstein condensates in a periodic potential.
    Bronski JC; Carr LD; Carretero-González R; Deconinck B; Kutz JN; Promislow K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056615. PubMed ID: 11736124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex PT-symmetric nonlinear Schrödinger equation and Burgers equation.
    Yan Z
    Philos Trans A Math Phys Eng Sci; 2013 Apr; 371(1989):20120059. PubMed ID: 23509385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Piecewise linear emulator of the nonlinear Schrödinger equation and the resulting analytic solutions for Bose-Einstein condensates.
    Theodorakis S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066701. PubMed ID: 16241374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Josephson junction arrays with Bose-Einstein condensates.
    Cataliotti FS; Burger S; Fort C; Maddaloni P; Minardi F; Trombettoni A; Smerzi A; Inguscio M
    Science; 2001 Aug; 293(5531):843-6. PubMed ID: 11486083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disk-shaped Bose-Einstein condensates in the presence of an harmonic trap and an optical lattice.
    Kapitula T; Kevrekidis PG; Frantzeskakis DJ
    Chaos; 2008 Jun; 18(2):023101. PubMed ID: 18601468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symmetry breaking in symmetric and asymmetric double-well potentials.
    Theocharis G; Kevrekidis PG; Frantzeskakis DJ; Schmelcher P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056608. PubMed ID: 17280007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wandering breathers and self-trapping in weakly coupled nonlinear chains: classical counterpart of macroscopic tunneling quantum dynamics.
    Kosevich YA; Manevitch LI; Savin AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046603. PubMed ID: 18517746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nonlinear Schrödinger equation with generalized nonlinearities and PT-symmetric potentials: Stable solitons, interactions, and excitations.
    Yan Z; Chen Y
    Chaos; 2017 Jul; 27(7):073114. PubMed ID: 28764412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling rogue waves in inhomogeneous Bose-Einstein condensates.
    Loomba S; Kaur H; Gupta R; Kumar CN; Raju TS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052915. PubMed ID: 25353869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of the symmetry breaking in double-well potentials by the resonant nonlinearity management.
    Nistazakis HE; Malomed BA; Kevrekidis PG; Frantzeskakis DJ
    Chaos; 2011 Mar; 21(1):013114. PubMed ID: 21456828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional superfluid flows in inhomogeneous Bose-Einstein condensates.
    Yan Z; Konotop VV; Yulin AV; Liu WM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016601. PubMed ID: 22400689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uniform-density Bose-Einstein condensates of the Gross-Pitaevskii equation found by solving the inverse problem for the confining potential.
    Cooper F; Khare A; Dawson JF; Charalampidis EG; Saxena A
    Phys Rev E; 2023 Jun; 107(6-1):064202. PubMed ID: 37464684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.