These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 17025593)

  • 1. Critical dynamics of phase transition driven by dichotomous Markov noise.
    Ouchi K; Horita T; Fujisaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031106. PubMed ID: 17025593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics in the anisotropic XY model driven by dichotomous Markov noise.
    Ouchi K; Horita T; Tsukamoto N; Fujiwara N; Fujisaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021139. PubMed ID: 18850818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic phase transition in a time-dependent Ginzburg-Landau model in an oscillating field.
    Fujisaka H; Tutu H; Rikvold PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036109. PubMed ID: 11308711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of parametric dichotomous Markov noise on the properties of crises in dynamical systems.
    Gac JM; Zebrowski JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046202. PubMed ID: 21230360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-order phase transition and phase coexistence in a spin-glass model.
    Crisanti A; Leuzzi L
    Phys Rev Lett; 2002 Dec; 89(23):237204. PubMed ID: 12485037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonequilibrium magnetic properties in a two-dimensional kinetic mixed Ising system within the effective-field theory and Glauber-type stochastic dynamics approach.
    Ertaş M; Deviren B; Keskin M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051110. PubMed ID: 23214741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Domain-size statistics in the time-dependent Ginzburg-Landau equation driven by a dichotomous Markov noise.
    Ouchi K; Tsukamoto N; Horita T; Fujisaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041129. PubMed ID: 17994958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early time kinetics of systems with spatial symmetry breaking.
    Dominguez R; Barros K; Klein W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041121. PubMed ID: 19518187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Order-disorder transition in a model with two symmetric absorbing states.
    Park SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041140. PubMed ID: 22680451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field.
    Korniss G; White CJ; Rikvold PA; Novotny MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016120. PubMed ID: 11304327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo study of the phase transition in the critical behavior of the Ising model with shear.
    Saracco GP; Gonnella G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051126. PubMed ID: 20364966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Moment evolution and level-crossing statistics in dichotomous and multilevel flows with time-dependent control parameters.
    Nicolis G; Balakrishnan V; Nicolis C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051109. PubMed ID: 12059531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical derivation of critical exponents of the dynamic phase transition in the mean-field approximation.
    Gallardo RA; Idigoras O; Landeros P; Berger A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051101. PubMed ID: 23214732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical manifold of globally coupled overdamped anharmonic oscillators driven by additive Gaussian white noise.
    Kürsten R; Gütter S; Behn U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022114. PubMed ID: 24032782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pattern dynamics associated with on-off convection in a one-dimensional system.
    Ohara H; Fujisaka H; Ouchi K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046223. PubMed ID: 12786476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonequilibrium first-order phase transition in coupled oscillator systems with inertia and noise.
    Gupta S; Campa A; Ruffo S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022123. PubMed ID: 25353438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase transition in space: how far does a symmetry bend before it breaks?
    Zurek WH; Dorner U
    Philos Trans A Math Phys Eng Sci; 2008 Aug; 366(1877):2953-72. PubMed ID: 18534945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broken discrete and continuous symmetries in two-dimensional spiral antiferromagnets.
    Mezio A; Sposetti CN; Manuel LO; Trumper AE
    J Phys Condens Matter; 2013 Nov; 25(46):465602. PubMed ID: 24153423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Order parameter expansion and finite-size scaling study of coherent dynamics induced by quenched noise in the active rotator model.
    Komin N; Toral R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051127. PubMed ID: 21230457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic phase transitions in the anisotropic XY spin system in an oscillating magnetic field.
    Yasui T; Tutu H; Yamamoto M; Fujisaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036123. PubMed ID: 12366200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.