BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 17025668)

  • 1. Limits of high-order perturbation theory in time-domain optical mammography.
    Wassermann B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031908. PubMed ID: 17025668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of higher-order time-domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms.
    Grosenick D; Kummrow A; Macdonald R; Schlag PM; Rinneberg H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061908. PubMed ID: 18233870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of optical properties of a breast tumor using random walk theory.
    Chernomordik V; Hattery DW; Grosenick D; Wabnitz H; Rinneberg H; Moesta KT; Schlag PM; Gandjbakhche A
    J Biomed Opt; 2002 Jan; 7(1):80-7. PubMed ID: 11818015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of absorption and scattering discrimination by selection of sensitive points on temporal profile in diffuse optical tomography.
    Nouizi F; Torregrossa M; Chabrier R; Poulet P
    Opt Express; 2011 Jun; 19(13):12843-54. PubMed ID: 21716527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental test of a perturbation model for time-resolved imaging in diffusive media.
    Spinelli L; Torricelli A; Pifferi A; Taroni P; Cubeddu R
    Appl Opt; 2003 Jun; 42(16):3145-53. PubMed ID: 12790465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-scattering optical tomography: simultaneous reconstruction of scattering and absorption.
    Florescu L; Markel VA; Schotland JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016602. PubMed ID: 20365486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of detection limits for diffuse optical tomography systems: I. Theory and experiment.
    Ziegler R; Brendel B; Schipper A; Harbers R; Beek Mv; Rinneberg H; Nielsen T
    Phys Med Biol; 2009 Jan; 54(2):399-412. PubMed ID: 19098359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of detection limits for diffuse optical tomography systems: II. Analysis of slab and cup geometry for breast imaging.
    Ziegler R; Brendel B; Rinneberg H; Nielsen T
    Phys Med Biol; 2009 Jan; 54(2):413-31. PubMed ID: 19098350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling and experimental verification for a broad beam light transport in optical tomography.
    Janunts E; Pöschinger T; Eisa F; Langenbucher A
    Z Med Phys; 2010; 20(4):277-86. PubMed ID: 20889320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffuse optical tomography through solving a system of quadratic equations: theory and simulations.
    Kanmani B; Vasu RM
    Phys Med Biol; 2006 Feb; 51(4):981-98. PubMed ID: 16467591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-infrared fluorescent dyes for enhanced contrast in optical mammography: phantom experiments.
    Ebert B; Sukowski U; Grosenick D; Wabnitz H; Moesta KT; Licha K; Becker A; Semmler W; Schlag PM; Rinneberg H
    J Biomed Opt; 2001 Apr; 6(2):134-40. PubMed ID: 11375722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theory and analysis of frequency-domain photoacoustic tomography.
    Baddour N
    J Acoust Soc Am; 2008 May; 123(5):2577-90. PubMed ID: 18529177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulations of increased/decreased scattering inclusions inside a turbid slab.
    Dagdug L; Chernomordik V; Weiss GH; Gandjbakhche AH
    Phys Med Biol; 2005 Dec; 50(23):5573-81. PubMed ID: 16306653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-mesh optical tomography reconstruction method with a depth correction that uses a priori ultrasound information.
    Huang M; Zhu Q
    Appl Opt; 2004 Mar; 43(8):1654-62. PubMed ID: 15046168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-domain fluorescence-guided diffuse optical tomography based on the third-order simplified harmonics approximation.
    Ma W; Zhang W; Yi X; Li J; Wu L; Wang X; Zhang L; Zhou Z; Zhao H; Gao F
    Appl Opt; 2012 Dec; 51(36):8656-68. PubMed ID: 23262607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of female breast lesions from multi-wavelength time-resolved optical mammography.
    Spinelli L; Torricelli A; Pifferi A; Taroni P; Danesini G; Cubeddu R
    Phys Med Biol; 2005 Jun; 50(11):2489-502. PubMed ID: 15901950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validity of a modified Born approximation for a pulsed plane wave in acoustic scattering problems.
    Saha RK; Sharma SK
    Phys Med Biol; 2005 Jun; 50(12):2823-36. PubMed ID: 15930605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient algorithm to calculate the optical properties of breast tumors by high-order perturbation theory.
    Wassermann B; Jishi RA; Grosenick D
    J Opt Soc Am A Opt Image Sci Vis; 2023 Oct; 40(10):1882-1894. PubMed ID: 37855544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perturbation theory for the diffusion equation by use of the moments of the generalized temporal point-spread function. III. Frequency-domain and time-domain results.
    Sassaroli A; Martelli F; Fantini S
    J Opt Soc Am A Opt Image Sci Vis; 2010 Jul; 27(7):1723-42. PubMed ID: 20596162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data.
    Li X; Jiang H
    Phys Med Biol; 2013 Feb; 58(4):999-1011. PubMed ID: 23339968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.