These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 17025669)

  • 1. Breaking bonds in the atomic force microscope: theory and analysis.
    Hanke F; Kreuzer HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031909. PubMed ID: 17025669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breaking bonds in the atomic force microscope: extracting information.
    Hanke F; Kreuzer HJ
    Biointerphases; 2006 Mar; 1(1):11. PubMed ID: 20408610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical aspects of the biological catch bond.
    Prezhdo OV; Pereverzev YV
    Acc Chem Res; 2009 Jun; 42(6):693-703. PubMed ID: 19331389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Practical single molecule force spectroscopy: how to determine fundamental thermodynamic parameters of intermolecular bonds with an atomic force microscope.
    Noy A; Friddle RW
    Methods; 2013 Apr; 60(2):142-50. PubMed ID: 23531626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative characterization of nanoadhesion by dynamic force spectroscopy.
    Ptak A; Kappl M; Moreno-Flores S; Gojzewski H; Butt HJ
    Langmuir; 2009 Jan; 25(1):256-61. PubMed ID: 19053639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic force spectroscopy on soft molecular systems: improved analysis of unbinding spectra with varying linker compliance.
    Thormann E; Hansen PL; Simonsen AC; Mouritsen OG
    Colloids Surf B Biointerfaces; 2006 Dec; 53(2):149-56. PubMed ID: 17023148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluctuations of primary ubiquitin folding intermediates in a force clamp.
    Gräter F; Grubmüller H
    J Struct Biol; 2007 Mar; 157(3):557-69. PubMed ID: 17306561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinctive features of the biological catch bond in the jump-ramp force regime predicted by the two-pathway model.
    Pereverzev YV; Prezhdo OV; Thomas WE; Sokurenko EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):010903. PubMed ID: 16089930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanical stability of ubiquitin is linkage dependent.
    Carrion-Vazquez M; Li H; Lu H; Marszalek PE; Oberhauser AF; Fernandez JM
    Nat Struct Biol; 2003 Sep; 10(9):738-43. PubMed ID: 12923571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic strength of the silicon-carbon bond observed over three decades of force-loading rates.
    Schmidt SW; Beyer MK; Clausen-Schaumann H
    J Am Chem Soc; 2008 Mar; 130(11):3664-8. PubMed ID: 18302382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques.
    Schlierf M; Li H; Fernandez JM
    Proc Natl Acad Sci U S A; 2004 May; 101(19):7299-304. PubMed ID: 15123816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic force spectroscopy of the specific interaction between the PDZ domain and its recognition peptides.
    Maki T; Kidoaki S; Usui K; Suzuki H; Ito M; Ito F; Hayashizaki Y; Matsuda T
    Langmuir; 2007 Feb; 23(5):2668-73. PubMed ID: 17269804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction of systematic errors in single-molecule force spectroscopy with polymeric tethers by atomic force microscopy.
    Ray C; Brown JR; Akhremitchev BB
    J Phys Chem B; 2007 Mar; 111(8):1963-74. PubMed ID: 17284065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-molecule force-clamp spectroscopy: dwell time analysis and practical considerations.
    Cao Y; Li H
    Langmuir; 2011 Feb; 27(4):1440-7. PubMed ID: 21117668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free energy surfaces from single-molecule force spectroscopy.
    Hummer G; Szabo A
    Acc Chem Res; 2005 Jul; 38(7):504-13. PubMed ID: 16028884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-molecule force spectroscopy of supramolecular heterodimeric capsules.
    Schröder T; Geisler T; Walhorn V; Schnatwinkel B; Anselmetti D; Mattay J
    Phys Chem Chem Phys; 2010 Sep; 12(36):10981-7. PubMed ID: 20661519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force-clamp spectroscopy monitors the folding trajectory of a single protein.
    Fernandez JM; Li H
    Science; 2004 Mar; 303(5664):1674-8. PubMed ID: 15017000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistics of reversible transitions in two-state trajectories in force-ramp spectroscopy.
    Diezemann G
    J Chem Phys; 2014 May; 140(18):184905. PubMed ID: 24832304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic force microscopy and force spectroscopy on the assessment of protein folding and functionality.
    Carvalho FA; Martins IC; Santos NC
    Arch Biochem Biophys; 2013 Mar; 531(1-2):116-27. PubMed ID: 23228596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of three competing dynamic force spectroscopy models to study binding forces of amyloid-β (1-42).
    Hane FT; Attwood SJ; Leonenko Z
    Soft Matter; 2014 Mar; 10(12):1924-30. PubMed ID: 24652035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.