These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
355 related articles for article (PubMed ID: 17025701)
1. Kinetically reduced local Navier-Stokes equations: an alternative approach to hydrodynamics. Karlin IV; Tomboulides AG; Frouzakis CE; Ansumali S Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):035702. PubMed ID: 17025701 [TBL] [Abstract][Full Text] [Related]
2. Kinetically reduced local Navier-Stokes equations for simulation of incompressible viscous flows. Borok S; Ansumali S; Karlin IV Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066704. PubMed ID: 18233940 [TBL] [Abstract][Full Text] [Related]
3. Thermodynamic theory of incompressible hydrodynamics. Ansumali S; Karlin IV; Ottinger HC Phys Rev Lett; 2005 Mar; 94(8):080602. PubMed ID: 15783873 [TBL] [Abstract][Full Text] [Related]
4. Entropically damped form of artificial compressibility for explicit simulation of incompressible flow. Clausen JR Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013309. PubMed ID: 23410462 [TBL] [Abstract][Full Text] [Related]
5. Generalizations of incompressible and compressible Navier-Stokes equations to fractional time and multi-fractional space. Kavvas ML; Ercan A Sci Rep; 2022 Nov; 12(1):19337. PubMed ID: 36369242 [TBL] [Abstract][Full Text] [Related]
6. Instability of Poiseuille flow at extreme Mach numbers: linear analysis and simulations. Xie Z; Girimaji SS Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043001. PubMed ID: 24827326 [TBL] [Abstract][Full Text] [Related]
7. Bulk and shear viscosities in lattice Boltzmann equations. Dellar PJ Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 1):031203. PubMed ID: 11580323 [TBL] [Abstract][Full Text] [Related]
8. Influence of the dispersive and dissipative scales alpha and beta on the energy spectrum of the Navier-Stokes alphabeta equations. Chen X; Fried E Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046317. PubMed ID: 18999536 [TBL] [Abstract][Full Text] [Related]
9. Navier-Stokes Equations Do Not Describe the Smallest Scales of Turbulence in Gases. McMullen RM; Krygier MC; Torczynski JR; Gallis MA Phys Rev Lett; 2022 Mar; 128(11):114501. PubMed ID: 35363027 [TBL] [Abstract][Full Text] [Related]
10. Numerical methods for the stochastic Landau-Lifshitz Navier-Stokes equations. Bell JB; Garcia AL; Williams SA Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016708. PubMed ID: 17677595 [TBL] [Abstract][Full Text] [Related]
11. Self-attenuation of extreme events in Navier-Stokes turbulence. Buaria D; Pumir A; Bodenschatz E Nat Commun; 2020 Nov; 11(1):5852. PubMed ID: 33203875 [TBL] [Abstract][Full Text] [Related]
12. Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations. Li Q; He YL; Wang Y; Tao WQ Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056705. PubMed ID: 18233788 [TBL] [Abstract][Full Text] [Related]
14. Finite-scale equations for compressible fluid flow. Margolin LG Philos Trans A Math Phys Eng Sci; 2009 Jul; 367(1899):2861-71. PubMed ID: 19531508 [TBL] [Abstract][Full Text] [Related]
15. Dynamical properties of a confined diatomic fluid undergoing zero mean oscillatory flow: effect of molecular rotation. Hansen JS; Todd BD; Daivis PJ Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066707. PubMed ID: 18643397 [TBL] [Abstract][Full Text] [Related]
17. Two-fluid approach for direct numerical simulation of particle-laden turbulent flows at small Stokes numbers. Shotorban B; Balachandar S Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056703. PubMed ID: 19518589 [TBL] [Abstract][Full Text] [Related]
18. Artificial compressibility method for strongly anisothermal low Mach number flows. Dupuy D; Toutant A; Bataille F Phys Rev E; 2021 Jan; 103(1-1):013314. PubMed ID: 33601557 [TBL] [Abstract][Full Text] [Related]
19. In what sense is turbulence an unsolved problem? Nelkin M Science; 1992 Jan; 255(5044):566-70. PubMed ID: 17792378 [TBL] [Abstract][Full Text] [Related]
20. Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations. Fouxon I; Oz Y Phys Rev Lett; 2008 Dec; 101(26):261602. PubMed ID: 19437634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]