These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 17025703)
1. Cellular automaton simulation of pedestrian counter flow with different walk velocities. Weng WG; Chen T; Yuan HY; Fan WC Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036102. PubMed ID: 17025703 [TBL] [Abstract][Full Text] [Related]
2. Analysis of pedestrian dynamics in counter flow via an extended lattice gas model. Kuang H; Li X; Song T; Dai S Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 2):066117. PubMed ID: 19256915 [TBL] [Abstract][Full Text] [Related]
3. Cellular automaton simulation of pedestrian counter flow considering the surrounding environment. Yu YF; Song WG Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046112. PubMed ID: 17500966 [TBL] [Abstract][Full Text] [Related]
4. Quantitative analysis of pedestrian counterflow in a cellular automaton model. Nowak S; Schadschneider A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066128. PubMed ID: 23005183 [TBL] [Abstract][Full Text] [Related]
5. Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Kirchner A; Nishinari K; Schadschneider A Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056122. PubMed ID: 12786235 [TBL] [Abstract][Full Text] [Related]
6. Anisotropy effect on two-dimensional cellular-automaton traffic flow with periodic and open boundaries. Benyoussef A; Chakib H; Ez-Zahraouy H Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026129. PubMed ID: 14525071 [TBL] [Abstract][Full Text] [Related]
7. Spatial-size scaling of pedestrian groups under growing density conditions. Zanlungo F; Brščić D; Kanda T Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062810. PubMed ID: 26172757 [TBL] [Abstract][Full Text] [Related]
8. Potential field cellular automata model for pedestrian flow. Zhang P; Jian XX; Wong SC; Choi K Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021119. PubMed ID: 22463165 [TBL] [Abstract][Full Text] [Related]
9. Empirical analysis of the lane formation process in bidirectional pedestrian flow. Feliciani C; Nishinari K Phys Rev E; 2016 Sep; 94(3-1):032304. PubMed ID: 27739694 [TBL] [Abstract][Full Text] [Related]
10. Lévy walk process in self-organization of pedestrian crowds. Murakami H; Feliciani C; Nishinari K J R Soc Interface; 2019 Apr; 16(153):20180939. PubMed ID: 30966950 [TBL] [Abstract][Full Text] [Related]
11. Simulation of bi-directional pedestrian flow in corridor based on direction fuzzy visual field. Li S; Li Q; Zhong G; Zhang Y Sci Rep; 2023 Nov; 13(1):19261. PubMed ID: 37935739 [TBL] [Abstract][Full Text] [Related]
12. The follicular automaton model: effect of stochasticity and of synchronization of hair cycles. Halloy J; Bernard BA; Loussouarn G; Goldbeter A J Theor Biol; 2002 Feb; 214(3):469-79. PubMed ID: 11846603 [TBL] [Abstract][Full Text] [Related]
13. Pedestrian flow through multiple bottlenecks. Ezaki T; Yanagisawa D; Nishinari K Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026118. PubMed ID: 23005836 [TBL] [Abstract][Full Text] [Related]
14. Continuous-space automaton model for pedestrian dynamics. Baglietto G; Parisi DR Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056117. PubMed ID: 21728615 [TBL] [Abstract][Full Text] [Related]
15. Pedestrian flow dynamics in a lattice gas model coupled with an evolutionary game. Hao QY; Jiang R; Hu MB; Jia B; Wu QS Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036107. PubMed ID: 22060456 [TBL] [Abstract][Full Text] [Related]
16. Features of pedestrian behavior in car-to-pedestrian contact situations in near-miss incidents in Japan. Matsui Y; Hitosugi M; Doi T; Oikawa S; Takahashi K; Ando K Traffic Inj Prev; 2013; 14 Suppl():S58-63. PubMed ID: 23905703 [TBL] [Abstract][Full Text] [Related]
17. Open boundaries in a cellular automaton model for traffic flow with metastable states. Barlovic R; Huisinga T; Schadschneider A; Schreckenberg M Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046113. PubMed ID: 12443265 [TBL] [Abstract][Full Text] [Related]
18. Dissipative particle dynamics simulation of flow generated by two rotating concentric cylinders: boundary conditions. Haber S; Filipovic N; Kojic M; Tsuda A Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046701. PubMed ID: 17155206 [TBL] [Abstract][Full Text] [Related]
19. Introduction of frictional and turning function for pedestrian outflow with an obstacle. Yanagisawa D; Kimura A; Tomoeda A; Nishi R; Suma Y; Ohtsuka K; Nishinari K Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036110. PubMed ID: 19905183 [TBL] [Abstract][Full Text] [Related]
20. Simulation of counterflow pedestrian dynamics using spheropolygons. Alonso-Marroquín F; Busch J; Chiew C; Lozano C; Ramírez-Gómez Á Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063305. PubMed ID: 25615220 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]