These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 17025732)

  • 21. Resonantly forced inhomogeneous reaction-diffusion systems.
    Hemming CJ; Kapral R
    Chaos; 2000 Sep; 10(3):720-730. PubMed ID: 12779421
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Instability in reaction-superdiffusion systems.
    Torabi R; Rezaei Z
    Phys Rev E; 2016 Nov; 94(5-1):052202. PubMed ID: 27967163
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Superlattice patterns and spatial instability induced by delay feedback.
    Hu HX; Li QS; Ji L
    Phys Chem Chem Phys; 2008 Jan; 10(3):438-41. PubMed ID: 18174985
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Period doubling and spatiotemporal chaos in periodically forced CO oxidation on Pt(110).
    Krefting D; Kaira P; Rotermund HH
    Phys Rev Lett; 2009 May; 102(17):178301. PubMed ID: 19518840
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pattern analysis in a benthic bacteria-nutrient system.
    Wetzel D
    Math Biosci Eng; 2016 Apr; 13(2):303-32. PubMed ID: 27105985
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Competing resonances in spatially forced pattern-forming systems.
    Mau Y; Haim L; Hagberg A; Meron E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032917. PubMed ID: 24125335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Escape through an unstable limit cycle driven by multiplicative colored non-Gaussian and additive white Gaussian noises.
    Bag BC; Hu CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):042101. PubMed ID: 17500937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transverse instabilities in chemical Turing patterns of stripes.
    Peña B; Pérez-García C; Sanz-Anchelergues A; Míguez DG; Muñuzuri AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056206. PubMed ID: 14682870
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Front reversals, wave traps, and twisted spirals in periodically forced oscillatory media.
    Rudzick O; Mikhailov AS
    Phys Rev Lett; 2006 Jan; 96(1):018302. PubMed ID: 16486527
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the influence of additive and multiplicative noise on holes in dissipative systems.
    Descalzi O; Cartes C; Brand HR
    Chaos; 2017 May; 27(5):053101. PubMed ID: 28576105
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of square spatial periodic forcing on oscillatory hexagon patterns in coupled reaction-diffusion systems.
    Fan W; Ma F; Tong Y; Liu Q; Liu R; He Y; Liu F
    Phys Chem Chem Phys; 2023 Oct; 25(38):26023-26031. PubMed ID: 37740348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Noise-reversed stability of Turing patterns versus Hopf oscillations near codimension-two conditions.
    Alonso S; Sagués F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):035203. PubMed ID: 19905167
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous influence of additive and multiplicative noise on stationary dissipative solitons.
    Cartes C; Descalzi O; Brand HR
    Phys Rev E; 2019 Jul; 100(1-1):012214. PubMed ID: 31499916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pattern formation in reaction-diffusion systems in the presence of non-Markovian diffusion.
    Torabi R; Davidsen J
    Phys Rev E; 2019 Nov; 100(5-1):052217. PubMed ID: 31869913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Front explosion in a periodically forced surface reaction.
    Davidsen J; Mikhailov A; Kapral R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046214. PubMed ID: 16383519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Turing-like instabilities from a limit cycle.
    Challenger JD; Burioni R; Fanelli D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022818. PubMed ID: 26382465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transition from traveling to standing waves in the 4:1 resonant Belousov-Zhabotinsky reaction.
    Marts B; Lin AL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026211. PubMed ID: 18352107
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Frequency locking in spatially extended systems.
    Park HK
    Phys Rev Lett; 2001 Feb; 86(6):1130-3. PubMed ID: 11178027
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Eckhaus selection: The mechanism of pattern persistence in a reaction-diffusion system.
    Ledesma-Durán A; Ortiz-Durán EA; Aragón JL; Santamaría-Holek I
    Phys Rev E; 2020 Sep; 102(3-1):032214. PubMed ID: 33076036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dichotomous-noise-induced pattern formation in a reaction-diffusion system.
    Das D; Ray DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062924. PubMed ID: 23848765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.