These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 17025908)

  • 1. Influence of surface roughness on superhydrophobicity.
    Yang C; Tartaglino U; Persson BN
    Phys Rev Lett; 2006 Sep; 97(11):116103. PubMed ID: 17025908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wettability of natural superhydrophobic surfaces.
    Webb HK; Crawford RJ; Ivanova EP
    Adv Colloid Interface Sci; 2014 Aug; 210():58-64. PubMed ID: 24556235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanically durable carbon nanotube-composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag.
    Jung YC; Bhushan B
    ACS Nano; 2009 Dec; 3(12):4155-63. PubMed ID: 19947581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of statistical properties of randomly rough surfaces in controlling superhydrophobicity.
    Bottiglione F; Carbone G
    Langmuir; 2013 Jan; 29(2):599-609. PubMed ID: 23210830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanodroplets on rough hydrophilic and hydrophobic surfaces.
    Yang C; Tartaglino U; Persson BN
    Eur Phys J E Soft Matter; 2008 Feb; 25(2):139-52. PubMed ID: 18311474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Hierarchical Surface Roughness on Droplet Contact Angle.
    Bell MS; Shahraz A; Fichthorn KA; Borhan A
    Langmuir; 2015 Jun; 31(24):6752-62. PubMed ID: 26030089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces.
    Cortese B; D'Amone S; Manca M; Viola I; Cingolani R; Gigli G
    Langmuir; 2008 Mar; 24(6):2712-8. PubMed ID: 18217778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces.
    Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J
    Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal matrix composites for sustainable lotus-effect surfaces.
    Nosonovsky M; Hejazi V; Nyong AE; Rohatgi PK
    Langmuir; 2011 Dec; 27(23):14419-24. PubMed ID: 21999807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superhydrophobicity of biological and technical surfaces under moisture condensation: stability in relation to surface structure.
    Mockenhaupt B; Ensikat HJ; Spaeth M; Barthlott W
    Langmuir; 2008 Dec; 24(23):13591-7. PubMed ID: 18959433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cotton fabrics with single-faced superhydrophobicity.
    Liu Y; Xin JH; Choi CH
    Langmuir; 2012 Dec; 28(50):17426-34. PubMed ID: 23186211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adhesion of liquid droplets to rough surfaces.
    Li R; Alizadeh A; Shang W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041608. PubMed ID: 21230288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible Teflon nanocone array surfaces with tunable superhydrophobicity for self-cleaning and aqueous droplet patterning.
    Toma M; Loget G; Corn RM
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11110-7. PubMed ID: 24654844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical Explanation of the Lotus Effect: Superhydrophobic Property Changes by Removal of Nanostructures from the Surface of a Lotus Leaf.
    Yamamoto M; Nishikawa N; Mayama H; Nonomura Y; Yokojima S; Nakamura S; Uchida K
    Langmuir; 2015 Jul; 31(26):7355-63. PubMed ID: 26075949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Packing the silica colloidal crystal beads: a facile route to superhydrophobic surfaces.
    Sun C; Gu ZZ; Xu H
    Langmuir; 2009 Nov; 25(21):12439-43. PubMed ID: 19785469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and characterization of the hierarchical structure for superhydrophobicity and self-cleaning.
    Bhushan B; Koch K; Jung YC
    Ultramicroscopy; 2009 Jul; 109(8):1029-34. PubMed ID: 19345499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon.
    Zhu L; Xiu Y; Xu J; Tamirisa PA; Hess DW; Wong CP
    Langmuir; 2005 Nov; 21(24):11208-12. PubMed ID: 16285792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.
    Sasmal AK; Mondal C; Sinha AK; Gauri SS; Pal J; Aditya T; Ganguly M; Dey S; Pal T
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22034-43. PubMed ID: 25419984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of multiscale roughness in the Lotus effect: is it essential for super-hydrophobicity?
    Bittoun E; Marmur A
    Langmuir; 2012 Oct; 28(39):13933-42. PubMed ID: 22946829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile Adhesion-Tuning of Superhydrophobic Surfaces between "Lotus" and "Petal" Effect and Their Influence on Icing and Deicing Properties.
    Nine MJ; Tung TT; Alotaibi F; Tran DN; Losic D
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8393-8402. PubMed ID: 28192650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.