These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 17026037)
1. Dynamics of a deformable body in a fast flowing soap film. Jung S; Mareck K; Shelley M; Zhang J Phys Rev Lett; 2006 Sep; 97(13):134502. PubMed ID: 17026037 [TBL] [Abstract][Full Text] [Related]
2. Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Zhang J; Childress S; Libchaber A; Shelley M Nature; 2000 Dec; 408(6814):835-9. PubMed ID: 11130717 [TBL] [Abstract][Full Text] [Related]
3. Vortex-wake interactions of a flapping foil that models animal swimming and flight. Lentink D; Muijres FT; Donker-Duyvis FJ; van Leeuwen JL J Exp Biol; 2008 Jan; 211(Pt 2):267-73. PubMed ID: 18165254 [TBL] [Abstract][Full Text] [Related]
4. Structure-based interpretation of the Strouhal-Reynolds number relationship. Roushan P; Wu XL Phys Rev Lett; 2005 Feb; 94(5):054504. PubMed ID: 15783649 [TBL] [Abstract][Full Text] [Related]
5. Hysteresis at low Reynolds number: onset of two-dimensional vortex shedding. Horvath VK; Cressman JR; Goldburg WI; Wu XL Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5A):R4702-5. PubMed ID: 11031506 [TBL] [Abstract][Full Text] [Related]
6. Cylinder wakes in flowing soap films. Vorobieff P; Ecke RE Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2953-6. PubMed ID: 11970100 [TBL] [Abstract][Full Text] [Related]
7. Flow visualization data from experiments with an oscillating circular cylinder in a gravity-driven soap film. Masroor E; Yang W; Stremler MA Data Brief; 2022 Apr; 41():107819. PubMed ID: 35141369 [TBL] [Abstract][Full Text] [Related]
8. Flapping dynamics of a flexible filament. Ait Abderrahmane H; Paidoussis MP; Fayed M; Ng HD Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066604. PubMed ID: 22304208 [TBL] [Abstract][Full Text] [Related]
9. Evidence for Vortex Shedding in the Sun's Hot Corona. Samanta T; Tian H; Nakariakov VM Phys Rev Lett; 2019 Jul; 123(3):035102. PubMed ID: 31386484 [TBL] [Abstract][Full Text] [Related]
10. Secondary vortex street in the wake of two tandem circular cylinders at low Reynolds number. Wang SY; Tian FB; Jia LB; Lu XY; Yin XZ Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036305. PubMed ID: 20365852 [TBL] [Abstract][Full Text] [Related]
11. Passive oscillations of two tandem flexible filaments in a flowing soap film. Jia LB; Yin XZ Phys Rev Lett; 2008 Jun; 100(22):228104. PubMed ID: 18643464 [TBL] [Abstract][Full Text] [Related]
12. Shape Deformation and Drag Variation of a Coupled Rigid-Flexible System in a Flowing Soap Film. Gao S; Pan S; Wang H; Tian X Phys Rev Lett; 2020 Jul; 125(3):034502. PubMed ID: 32745406 [TBL] [Abstract][Full Text] [Related]
13. Real-time visualization of Karman vortex street in water flow field by using digital holography. Sun W; Zhao J; Di J; Wang Q; Wang L Opt Express; 2009 Oct; 17(22):20342-8. PubMed ID: 19997262 [TBL] [Abstract][Full Text] [Related]
14. Elimination of vortex streets in bluff-body flows. Dong S; Triantafyllou GS; Karniadakis GE Phys Rev Lett; 2008 May; 100(20):204501. PubMed ID: 18518541 [TBL] [Abstract][Full Text] [Related]
15. What information do Kármán streets offer to flow sensing? Akanyeti O; Venturelli R; Visentin F; Chambers L; Megill WM; Fiorini P Bioinspir Biomim; 2011 Sep; 6(3):036001. PubMed ID: 21670492 [TBL] [Abstract][Full Text] [Related]
16. Computational study of the drag and oscillatory movement of biofilm streamers in fast flows. Taherzadeh D; Picioreanu C; Küttler U; Simone A; Wall WA; Horn H Biotechnol Bioeng; 2010 Feb; 105(3):600-10. PubMed ID: 19777581 [TBL] [Abstract][Full Text] [Related]
17. Gravity-driven soap film dynamics in subcritical regimes. Auliel MI; Castro F; Sosa R; Artana G Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043009. PubMed ID: 26565334 [TBL] [Abstract][Full Text] [Related]
18. Autonomous Sensors Powered by Energy Harvesting from von Karman Vortices in Airflow. Demori M; Ferrari M; Bonzanini A; Poesio P; Ferrari V Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28902139 [TBL] [Abstract][Full Text] [Related]
19. Impact of time-dependent nonaxisymmetric velocity perturbations on dynamo action of von Kármán-like flows. Giesecke A; Stefani F; Burguete J Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066303. PubMed ID: 23368034 [TBL] [Abstract][Full Text] [Related]
20. Bifurcation structure of the flame oscillation. Araya Y; Ito H; Kitahata H Phys Rev E; 2022 Apr; 105(4-1):044208. PubMed ID: 35590578 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]