These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
70 related articles for article (PubMed ID: 17026052)
1. Sharp corners in the cross section of ultrathin Si nanowires. Cao JX; Gong XG; Zhong JX; Wu RQ Phys Rev Lett; 2006 Sep; 97(13):136105. PubMed ID: 17026052 [TBL] [Abstract][Full Text] [Related]
2. Structures of Si and Ge nanowires in the subnanometer range. Kagimura R; Nunes RW; Chacham H Phys Rev Lett; 2005 Sep; 95(11):115502. PubMed ID: 16197015 [TBL] [Abstract][Full Text] [Related]
3. Theoretical studies of the passivants' effect on the Si(x)Ge(1-x) nanowires: composition profiles, diameter, shape, and electronic properties. Yang XB; Zhao YJ; Xu H J Chem Phys; 2013 Oct; 139(15):154713. PubMed ID: 24160539 [TBL] [Abstract][Full Text] [Related]
4. Dramatically enhanced ultraviolet photosensing mechanism in a n-ZnO nanowires/i-MgO/n-Si structure with highly dense nanowires and ultrathin MgO layers. Kim DC; Jung BO; Lee JH; Cho HK; Lee JY; Lee JH Nanotechnology; 2011 Jul; 22(26):265506. PubMed ID: 21586813 [TBL] [Abstract][Full Text] [Related]
5. Degenerate electronic structure of reconstructed MnSi(1.7) nanowires on Si(001). Liu HJ; Owen JH; Miki K J Phys Condens Matter; 2012 Mar; 24(9):095005. PubMed ID: 22275007 [TBL] [Abstract][Full Text] [Related]
6. Surface dangling-bond States and band lineups in hydrogen-terminated Si, Ge, and Ge/si nanowires. Kagimura R; Nunes RW; Chacham H Phys Rev Lett; 2007 Jan; 98(2):026801. PubMed ID: 17358629 [TBL] [Abstract][Full Text] [Related]
7. Confinement effect on the low temperature specific heat for ultrathin silicon nanowires: a first principles study. González I; Calvino M; Trejo A; Salazar F; Cruz-Irisson M J Phys Condens Matter; 2019 Oct; 31(42):425303. PubMed ID: 31252420 [TBL] [Abstract][Full Text] [Related]
8. Enhanced visible photoluminescence from ultrathin ZnO films grown on Si-nanowires by atomic layer deposition. Chang YM; Jian SR; Lee HY; Lin CM; Juang JY Nanotechnology; 2010 Sep; 21(38):385705. PubMed ID: 20798465 [TBL] [Abstract][Full Text] [Related]
9. A theoretical study of electronic and optical properties of SiC nanowires and their quantum confinement effects. Laref A; Alshammari N; Laref S; Luo SJ Dalton Trans; 2014 Apr; 43(14):5505-15. PubMed ID: 24535574 [TBL] [Abstract][Full Text] [Related]
10. First-principles studies on structural and electronic properties of GaN-AlN heterostructure nanowires. Zhang H; Li Y; Tang Q; Liu L; Zhou Z Nanoscale; 2012 Feb; 4(4):1078-84. PubMed ID: 21881662 [TBL] [Abstract][Full Text] [Related]
11. Controlled growth of Zn nano-dots on a Si(111)-7x7 surface saturated with C2H5OH. Jiang X; Xie Z; Shimojo M; Tanaka K J Chem Phys; 2007 Oct; 127(14):144705. PubMed ID: 17935421 [TBL] [Abstract][Full Text] [Related]
12. Monolithic growth of ultrathin Ge nanowires on Si(001). Zhang JJ; Katsaros G; Montalenti F; Scopece D; Rezaev RO; Mickel C; Rellinghaus B; Miglio L; De Franceschi S; Rastelli A; Schmidt OG Phys Rev Lett; 2012 Aug; 109(8):085502. PubMed ID: 23002758 [TBL] [Abstract][Full Text] [Related]
13. Geometric and electronic properties of endohedral Si @ C74. Tang C; Yuan Y; Deng K; Liu Y; Li X; Yang J; Wang X J Chem Phys; 2006 Sep; 125(10):104307. PubMed ID: 16999526 [TBL] [Abstract][Full Text] [Related]
16. Effect of surface Si redistribution on the alignment of Ge dots grown on pit-patterned Si(001) substrates. Chen HM; Suen YW; Chen SJ; Luo GL; Lai YP; Chen ST; Lee CH; Kuan CH Nanotechnology; 2014 Nov; 25(47):475301. PubMed ID: 25369731 [TBL] [Abstract][Full Text] [Related]
17. First principles study of lithium insertion in bulk silicon. Wan W; Zhang Q; Cui Y; Wang E J Phys Condens Matter; 2010 Oct; 22(41):415501. PubMed ID: 21386598 [TBL] [Abstract][Full Text] [Related]
18. Dispersibility, stabilization, and chemical stability of ultrathin tellurium nanowires in acetone: morphology change, crystallization, and transformation into TeO2 in different solvents. Lan WJ; Yu SH; Qian HS; Wan Y Langmuir; 2007 Mar; 23(6):3409-17. PubMed ID: 17295530 [TBL] [Abstract][Full Text] [Related]
19. Epitaxial heterostructures: side-to-side Si-ZnS, Si-ZnSe biaxial nanowires, and sandwichlike ZnS-Si-ZnS triaxial nanowires. Hu J; Bando Y; Liu Z; Sekiguchi T; Golberg D; Zhan J J Am Chem Soc; 2003 Sep; 125(37):11306-13. PubMed ID: 16220953 [TBL] [Abstract][Full Text] [Related]
20. Vertically oriented epitaxial germanium nanowires on silicon substrates using thin germanium buffer layers. Jung JH; Yoon HS; Kim YL; Song MS; Kim Y; Chen ZG; Zou J; Choi DY; Kang JH; Joyce HJ; Gao Q; Hoe Tan H; Jagadish C Nanotechnology; 2010 Jul; 21(29):295602. PubMed ID: 20585174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]