These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 1702623)

  • 1. Hyperammonaemia causes many of the changes found after portacaval shunting.
    Jessy J; Mans AM; DeJoseph MR; Hawkins RA
    Biochem J; 1990 Dec; 272(2):311-7. PubMed ID: 1702623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperammonaemia does not impair brain function in the absence of net glutamine synthesis.
    Hawkins RA; Jessy J
    Biochem J; 1991 Aug; 277 ( Pt 3)(Pt 3):697-703. PubMed ID: 1872806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early establishment of cerebral dysfunction after portacaval shunting.
    Mans AM; DeJoseph MR; Davis DW; Viña JR; Hawkins RA
    Am J Physiol; 1990 Jul; 259(1 Pt 1):E104-10. PubMed ID: 2372051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ammonia selectively stimulates neutral amino acid transport across blood-brain barrier.
    Mans AM; Biebuyck JF; Hawkins RA
    Am J Physiol; 1983 Jul; 245(1):C74-7. PubMed ID: 6408928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperammonaemia depresses glucose consumption throughout the brain.
    Jessy J; DeJoseph MR; Hawkins RA
    Biochem J; 1991 Aug; 277 ( Pt 3)(Pt 3):693-6. PubMed ID: 1872805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of reducing brain glutamine synthesis on metabolic symptoms of hepatic encephalopathy.
    Hawkins RA; Jessy J; Mans AM; De Joseph MR
    J Neurochem; 1993 Mar; 60(3):1000-6. PubMed ID: 8436955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of ammonia and portal-systemic shunting on brain metabolism, neurotransmission and intracranial hypertension in hyperammonaemia-induced encephalopathy.
    Vogels BA; van Steynen B; Maas MA; Jörning GG; Chamuleau RA
    J Hepatol; 1997 Feb; 26(2):387-95. PubMed ID: 9059962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for the role of ammonia in the intracerebral transfer and metabolism of tryptophan.
    Grippon P; Le Poncin Lafitte M; Boschat M; Wang S; Faure G; Dutertre D; Opolon P
    Hepatology; 1986; 6(4):682-6. PubMed ID: 2426170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methionine sulfoximine prevents the accumulation of large neutral amino acids in brain of portacaval-shunted rats.
    Rigotti P; Jonung T; Peters JC; James JH; Fischer JE
    J Neurochem; 1985 Mar; 44(3):929-33. PubMed ID: 3973598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Portacaval anastomosis: brain and plasma metabolite abnormalities and the effect of nutritional therapy.
    Mans AM; Biebuyck JF; Davis DW; Hawkins RA
    J Neurochem; 1984 Sep; 43(3):697-705. PubMed ID: 6379103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased blood-brain transport of tryptophan after portacaval anastomoses in germ-free rats.
    Jeppsson B; James JH; Hummel RP; Brenner W; West R; Fischer JE
    Metabolism; 1983 Jan; 32(1):4-8. PubMed ID: 6848895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebral amino acid levels and uptake in rats after portocaval anastomosis: II. Regional studies in vivo.
    Zanchin G; Rigotti P; Dussini N; Vassanelli P; Battistin L
    J Neurosci Res; 1979; 4(4):301-10. PubMed ID: 469965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of dietary amino acids on brain amino acids and transmitter amines in rats with a portacaval shunt.
    Kamata S; Okada A; Watanabe T; Kawashima Y; Wada H
    J Neurochem; 1980 Nov; 35(5):1190-9. PubMed ID: 6161235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship of brain glutamine and brain neutral amino acid concentrations after portacaval anastomosis in rats.
    Jeppsson B; James JH; Edwards LL; Fischer JE
    Eur J Clin Invest; 1985 Aug; 15(4):179-87. PubMed ID: 3930256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional brain monoamines and their metabolites after portacaval shunting.
    Mans AM; Consevage MW; DeJoseph MR; Hawkins RA
    Metab Brain Dis; 1987 Sep; 2(3):183-93. PubMed ID: 2463462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Failure of glucose and branched-chain amino acids to normalize brain glucose use in portacaval shunted rats.
    Mans AM; Davis DW; Biebuyck JF; Hawkins RA
    J Neurochem; 1986 Nov; 47(5):1434-43. PubMed ID: 2428933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intestinal glutamine and ammonia metabolism during chronic hyperammonaemia induced by liver insufficiency.
    Dejong CH; Deutz NE; Soeters PB
    Gut; 1993 Aug; 34(8):1112-9. PubMed ID: 7909784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperammonaemia, plasma aminoacid imbalance, and blood-brain aminoacid transport: a unified theory of portal-systemic encephalopathy.
    James JH; Ziparo V; Jeppsson B; Fischer JE
    Lancet; 1979 Oct; 2(8146):772-5. PubMed ID: 90864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral cortex ammonia and glutamine metabolism in two rat models of chronic liver insufficiency-induced hyperammonemia: influence of pair-feeding.
    Dejong CH; Deutz NE; Soeters PB
    J Neurochem; 1993 Mar; 60(3):1047-57. PubMed ID: 8094741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eliminating metabolic abnormalities of portacaval shunting by restoring normal liver blood flow.
    Hawkins PA; DeJoseph MR; Hawkins RA
    Am J Physiol; 1996 Jun; 270(6 Pt 1):E1037-42. PubMed ID: 8764189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.