These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 17026261)

  • 1. Geometrical spin dephasing in quantum dots.
    San-Jose P; Zarand G; Shnirman A; Schön G
    Phys Rev Lett; 2006 Aug; 97(7):076803. PubMed ID: 17026261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hole-Acceptor-Manipulated Electron Spin Dynamics in CdSe Colloidal Quantum Dots.
    Wu Z; Zhang Y; Hu R; Jiang M; Liang P; Yang Q; Deng L; Jia T; Sun Z; Feng D
    J Phys Chem Lett; 2021 Mar; 12(8):2126-2132. PubMed ID: 33625852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relaxation of hole spins in quantum dots via two-phonon processes.
    Trif M; Simon P; Loss D
    Phys Rev Lett; 2009 Sep; 103(10):106601. PubMed ID: 19792331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spin relaxation and decoherence of holes in quantum dots.
    Bulaev DV; Loss D
    Phys Rev Lett; 2005 Aug; 95(7):076805. PubMed ID: 16196813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A spin dephasing mechanism mediated by the interplay between the spin-orbit coupling and the asymmetrical confining potential in a semiconductor quantum dot.
    Li R
    J Phys Condens Matter; 2018 Oct; 30(39):395304. PubMed ID: 30141413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relaxation and dephasing in a two-electron 13C nanotube double quantum dot.
    Churchill HO; Kuemmeth F; Harlow JW; Bestwick AJ; Rashba EI; Flensberg K; Stwertka CH; Taychatanapat T; Watson SK; Marcus CM
    Phys Rev Lett; 2009 Apr; 102(16):166802. PubMed ID: 19518737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of nuclear quadrupole coupling on decoherence and relaxation of central spins in quantum dots.
    Sinitsyn NA; Li Y; Crooker SA; Saxena A; Smith DL
    Phys Rev Lett; 2012 Oct; 109(16):166605. PubMed ID: 23215108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical suppression of spin relaxation in GaAs(111)B quantum wells.
    Hernández-Mínguez A; Biermann K; Hey R; Santos PV
    Phys Rev Lett; 2012 Dec; 109(26):266602. PubMed ID: 23368596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin-flip limited exciton dephasing in CdSe/ZnS colloidal quantum dots.
    Masia F; Accanto N; Langbein W; Borri P
    Phys Rev Lett; 2012 Feb; 108(8):087401. PubMed ID: 22463568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hole-nuclear spin interaction in quantum dots.
    Eble B; Testelin C; Desfonds P; Bernardot F; Balocchi A; Amand T; Miard A; Lemaître A; Marie X; Chamarro M
    Phys Rev Lett; 2009 Apr; 102(14):146601. PubMed ID: 19392463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum dots and spin qubits in graphene.
    Recher P; Trauzettel B
    Nanotechnology; 2010 Jul; 21(30):302001. PubMed ID: 20603538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical control of spin relaxation in a quantum dot.
    Amasha S; Maclean K; Radu IP; Zumbühl DM; Kastner MA; Hanson MP; Gossard AC
    Phys Rev Lett; 2008 Feb; 100(4):046803. PubMed ID: 18352316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How do phonons relax molecular spins?
    Lunghi A; Sanvito S
    Sci Adv; 2019 Sep; 5(9):eaax7163. PubMed ID: 31598553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperfine-Induced Electron-Spin Dephasing in Negatively Charged Colloidal Quantum Dots: A Survey of Size Dependence.
    Zhang Y; Jiang M; Wu Z; Yang Q; Men Y; Cheng L; Liang P; Hu R; Jia T; Sun Z; Feng D
    J Phys Chem Lett; 2021 Oct; 12(39):9481-9487. PubMed ID: 34559541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical cooling of nuclear spins in double quantum dots.
    Rudner MS; Levitov LS
    Nanotechnology; 2010 Jul; 21(27):274016. PubMed ID: 20571203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the Nuclear Electric Quadrupolar Interaction on the Coherence Time of Hole and Electron Spins Confined in Semiconductor Quantum Dots.
    Hackmann J; Glasenapp P; Greilich A; Bayer M; Anders FB
    Phys Rev Lett; 2015 Nov; 115(20):207401. PubMed ID: 26613469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical measurement and modeling of interactions between two hole spins or two electron spins in coupled InAs quantum dots.
    Greilich A; Bădescu ŞC; Kim D; Bracker AS; Gammon D
    Phys Rev Lett; 2013 Mar; 110(11):117402. PubMed ID: 25166576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin dynamics and relaxation in graphene dictated by electron-hole puddles.
    Tuan DV; Ortmann F; Cummings AW; Soriano D; Roche S
    Sci Rep; 2016 Feb; 6():21046. PubMed ID: 26876333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical pumping of a single hole spin in a quantum dot.
    Gerardot BD; Brunner D; Dalgarno PA; Ohberg P; Seidl S; Kroner M; Karrai K; Stoltz NG; Petroff PM; Warburton RJ
    Nature; 2008 Jan; 451(7177):441-4. PubMed ID: 18216849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.