These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 17026365)
1. Scarring by homoclinic and heteroclinic orbits. Wisniacki DA; Vergini E; Benito RM; Borondo F Phys Rev Lett; 2006 Sep; 97(9):094101. PubMed ID: 17026365 [TBL] [Abstract][Full Text] [Related]
2. Geometric determination of classical actions of heteroclinic and unstable periodic orbits. Li J; Tomsovic S Phys Rev E; 2017 Jun; 95(6-1):062224. PubMed ID: 28709367 [TBL] [Abstract][Full Text] [Related]
3. Phase space localization of chaotic eigenstates: violating ergodicity. Lakshminarayan A; Cerruti NR; Tomsovic S Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016209. PubMed ID: 11304337 [TBL] [Abstract][Full Text] [Related]
4. Exact decomposition of homoclinic orbit actions in chaotic systems: Information reduction. Li J; Tomsovic S Phys Rev E; 2019 Mar; 99(3-1):032212. PubMed ID: 30999433 [TBL] [Abstract][Full Text] [Related]
5. Exact relations between homoclinic and periodic orbit actions in chaotic systems. Li J; Tomsovic S Phys Rev E; 2018 Feb; 97(2-1):022216. PubMed ID: 29548081 [TBL] [Abstract][Full Text] [Related]
6. Order-chaos transition in correlation diagrams and quantization of period orbits. Arranz FJ; Montes J; Borondo F Phys Rev E; 2023 Sep; 108(3-1):034210. PubMed ID: 37849198 [TBL] [Abstract][Full Text] [Related]
8. Semiclassical approach to long time propagation in quantum chaos: predicting scars. Vergini EG Phys Rev Lett; 2012 Jun; 108(26):264101. PubMed ID: 23004984 [TBL] [Abstract][Full Text] [Related]
9. Exploring phase space localization of chaotic eigenstates via parametric variation. Cerruti NR; Lakshminarayan A; Lefebvre JH; Tomsovic S Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016208. PubMed ID: 11304336 [TBL] [Abstract][Full Text] [Related]
10. Scarring in open quantum systems. Wisniacki D; Carlo GG Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):045201. PubMed ID: 18517679 [TBL] [Abstract][Full Text] [Related]
11. Measuring scars of periodic orbits. Kaplan L; Heller EJ Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jun; 59(6):6609-28. PubMed ID: 11969649 [TBL] [Abstract][Full Text] [Related]
12. Semiclassical quantization of nonadiabatic systems with hopping periodic orbits. Fujii M; Yamashita K J Chem Phys; 2015 Feb; 142(7):074104. PubMed ID: 25701999 [TBL] [Abstract][Full Text] [Related]
13. On infinite homoclinic orbits induced by unstable periodic orbits in the Lorenz system. Guo S; Luo ACJ Chaos; 2021 Apr; 31(4):043106. PubMed ID: 34251254 [TBL] [Abstract][Full Text] [Related]
14. Localization properties of groups of eigenstates in chaotic systems. Wisniacki DA; Borondo F; Vergini E; Benito RM Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066220. PubMed ID: 11415219 [TBL] [Abstract][Full Text] [Related]
15. Melnikov-type method for a class of planar hybrid piecewise-smooth systems with impulsive effect and noise excitation: Heteroclinic orbits. Wei Z; Li Y; Moroz I; Zhang W Chaos; 2022 Oct; 32(10):103127. PubMed ID: 36319280 [TBL] [Abstract][Full Text] [Related]
16. Sil'nikov chaos of the Liu system. Zhou L; Chen F Chaos; 2008 Mar; 18(1):013113. PubMed ID: 18377064 [TBL] [Abstract][Full Text] [Related]
17. Periodic motions and homoclinic orbits in a discontinuous dynamical system on a single domain with multiple vector fields. Guo S; Luo ACJ Chaos; 2022 Mar; 32(3):033132. PubMed ID: 35364824 [TBL] [Abstract][Full Text] [Related]