These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 17027130)

  • 1. Meniscal screw fixation provides sufficient stability to prevent tears from gapping.
    Dürselen L; Hebisch A; Wagner D; Claes LE; Bauer G
    Clin Biomech (Bristol, Avon); 2007 Jan; 22(1):93-9. PubMed ID: 17027130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gapping phenomenon of longitudinal meniscal tears.
    Dürselen L; Hebisch A; Claes LE; Bauer G
    Clin Biomech (Bristol, Avon); 2003 Jul; 18(6):505-10. PubMed ID: 12828899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Biodegradable meniscus fixations: a comparative biomechanical study].
    Seil R; Rupp S; Jurecka C; Georg T; Kohn D
    Rev Chir Orthop Reparatrice Appar Mot; 2003 Feb; 89(1):35-43. PubMed ID: 12610434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anterior knee laxity increases gapping of posterior horn medial meniscal tears.
    Dürselen L; Vögele S; Seitz AM; Ignatius A; Friederich NF; Bauer G; Majewski M
    Am J Sports Med; 2011 Aug; 39(8):1749-55. PubMed ID: 21550989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic joint loading can affect the initial stability of meniscal fixation implants.
    Dürselen L; Schneider J; Galler M; Claes LE; Bauer G
    Clin Biomech (Bristol, Avon); 2003 Jan; 18(1):44-9. PubMed ID: 12527246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tensile and shear loading stability of all-inside meniscal repairs: an in vitro biomechanical evaluation.
    Brucker PU; Favre P; Puskas GJ; von Campe A; Meyer DC; Koch PP
    Am J Sports Med; 2010 Sep; 38(9):1838-44. PubMed ID: 20805413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of lesion location on fixation strength of the meniscal viper repair system: an in vitro study using porcine menisci.
    Chang HC; Caborn DN; Nyland J; Burden R
    Arthroscopy; 2006 Apr; 22(4):394-9. PubMed ID: 16581451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biomechanical analysis of the self-retaining pedicle hook device in posterior spinal fixation.
    van Laar W; Meester RJ; Smit TH; van Royen BJ
    Eur Spine J; 2007 Aug; 16(8):1209-14. PubMed ID: 17203270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meniscal repair devices: a clinical and biomechanical literature review.
    Farng E; Sherman O
    Arthroscopy; 2004 Mar; 20(3):273-86. PubMed ID: 15007316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pull-out and shear failure strengths of arthroscopic meniscal repair systems.
    Fisher SR; Markel DC; Koman JD; Atkinson TS
    Knee Surg Sports Traumatol Arthrosc; 2002 Sep; 10(5):294-9. PubMed ID: 12355304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Failure strength of repair devices versus meniscus suturing techniques.
    Aşík M; Sener N
    Knee Surg Sports Traumatol Arthrosc; 2002 Jan; 10(1):25-9. PubMed ID: 11819017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical evaluation of a transtibial pull-out meniscal root repair: challenging the bungee effect.
    Cerminara AJ; LaPrade CM; Smith SD; Ellman MB; Wijdicks CA; LaPrade RF
    Am J Sports Med; 2014 Dec; 42(12):2988-95. PubMed ID: 25239930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical comparison of two side plate fixation techniques in an unstable intertrochanteric osteotomy model: Sliding Hip Screw and Percutaneous Compression Plate.
    Krischak GD; Augat P; Beck A; Arand M; Baier B; Blakytny R; Gebhard F; Claes L
    Clin Biomech (Bristol, Avon); 2007 Dec; 22(10):1112-8. PubMed ID: 17900766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biomechanical comparison of the Mitek RapidLoc, Mitek Meniscal repair system, clearfix screws and vertical PDS and Ti-Cron sutures.
    Naqui SZ; Thiryayi WA; Hopgood P; Ryan WG
    Knee; 2006 Mar; 13(2):151-7. PubMed ID: 16338137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical comparison of four different fixation techniques for pediatric tibial eminence avulsion fractures.
    Mahar AT; Duncan D; Oka R; Lowry A; Gillingham B; Chambers H
    J Pediatr Orthop; 2008 Mar; 28(2):159-62. PubMed ID: 18388708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical evaluation of parasagittal occipital plating: screw load sharing analysis.
    Frush TJ; Fisher TJ; Ensminger SC; Truumees E; Demetropoulos CK
    Spine (Phila Pa 1976); 2009 Apr; 34(9):877-84. PubMed ID: 19531996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical evaluation of different fixation methods for tibial eminence fractures.
    Eggers AK; Becker C; Weimann A; Herbort M; Zantop T; Raschke MJ; Petersen W
    Am J Sports Med; 2007 Mar; 35(3):404-10. PubMed ID: 17170161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of a nonanatomic repair of the meniscal horn attachment on meniscal tension: a biomechanical study.
    Stärke C; Kopf S; Gröbel KH; Becker R
    Arthroscopy; 2010 Mar; 26(3):358-65. PubMed ID: 20206046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tensile forces at the porcine anterior meniscal horn attachment.
    Stärke C; Kopf S; Gröbel KH; Becker R
    J Orthop Res; 2009 Dec; 27(12):1619-24. PubMed ID: 19572411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Meniscal tear biomechanics: loads across meniscal tears in human cadaveric knees.
    Richards DP; Barber FA; Herbert MA
    Orthopedics; 2008 Apr; 31(4):347-50. PubMed ID: 18453170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.