BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 17027251)

  • 21. Ultrasonically actuated neural probes for reduced trauma and inflammation in mouse brain.
    Chen PC; Young CG; Schaffer CB; Lal A
    Microsyst Nanoeng; 2022; 8():117. PubMed ID: 36341081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Inkjet Printed Flexible Electrocorticography (ECoG) Microelectrode Array on a Thin Parylene-C Film.
    Kim Y; Alimperti S; Choi P; Noh M
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Signal Generation, Acquisition, and Processing in Brain Machine Interfaces: A Unified Review.
    Salahuddin U; Gao PX
    Front Neurosci; 2021; 15():728178. PubMed ID: 34588951
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intracortical Microelectrode Array Unit Yield under Chronic Conditions: A Comparative Evaluation.
    Usoro JO; Sturgill BS; Musselman KC; Capadona JR; Pancrazio JJ
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442594
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crosstalk in Polymer Microelectrode Arrays.
    Qiang Y; Gu W; Liu Z; Liang S; Ryu JH; Seo KJ; Liu W; Fang H
    Nano Res; 2021 Sep; 14(9):3240-3247. PubMed ID: 34394850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human motor decoding from neural signals: a review.
    Tam WK; Wu T; Zhao Q; Keefer E; Yang Z
    BMC Biomed Eng; 2019; 1():22. PubMed ID: 32903354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization and Analysis of Metal Adhesion to Parylene Polymer Substrate Using Scotch Tape Test for Peripheral Neural Probe.
    Seok S; Park H; Kim J
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32580430
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of Durability of Transparent Graphene Electrodes Fabricated on Different Flexible Substrates for Chronic In Vivo Experiments.
    Ding D; Lu Y; Zhao R; Liu X; De-Eknamkul C; Ren C; Mehrsa A; Komiyama T; Kuzum D
    IEEE Trans Biomed Eng; 2020 Nov; 67(11):3203-3210. PubMed ID: 32191878
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flexible Multielectrode Array for Skeletal Muscle Conditioning, Acetylcholine Receptor Stabilization and Epimysial Recording After Critical Peripheral Nerve Injury.
    McAvoy M; Tsosie JK; Vyas KN; Khan OF; Sadtler K; Langer R; Anderson DG
    Theranostics; 2019; 9(23):7099-7107. PubMed ID: 31660089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Critical Review of Microelectrode Arrays and Strategies for Improving Neural Interfaces.
    Ferguson M; Sharma D; Ross D; Zhao F
    Adv Healthc Mater; 2019 Oct; 8(19):e1900558. PubMed ID: 31464094
    [TBL] [Abstract][Full Text] [Related]  

  • 31. State-of-the-art MEMS and microsystem tools for brain research.
    Seymour JP; Wu F; Wise KD; Yoon E
    Microsyst Nanoeng; 2017; 3():16066. PubMed ID: 31057845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plateau-Shaped Flexible Polymer Microelectrode Array for Neural Recording.
    Kim JM; Im C; Lee WR
    Polymers (Basel); 2017 Dec; 9(12):. PubMed ID: 30965988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gold-Plated Electrode with High Scratch Strength for Electrophysiological Recordings.
    Vafaiee M; Vossoughi M; Mohammadpour R; Sasanpour P
    Sci Rep; 2019 Feb; 9(1):2985. PubMed ID: 30814648
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of the Neuroinflammatory Response to Thiol-ene Shape Memory Polymer Coated Intracortical Microelectrodes.
    Shoffstall AJ; Ecker M; Danda V; Joshi-Imre A; Stiller A; Yu M; Paiz JE; Mancuso E; Bedell HW; Voit WE; Pancrazio JJ; Capadona JR
    Micromachines (Basel); 2018 Sep; 9(10):. PubMed ID: 30424419
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flexible, Penetrating Brain Probes Enabled by Advances in Polymer Microfabrication.
    Weltman A; Yoo J; Meng E
    Micromachines (Basel); 2016 Oct; 7(10):. PubMed ID: 30404353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural Probes for Chronic Applications.
    Kook G; Lee SW; Lee HC; Cho IJ; Lee HJ
    Micromachines (Basel); 2016 Oct; 7(10):. PubMed ID: 30404352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural Interfaces for Intracortical Recording: Requirements, Fabrication Methods, and Characteristics.
    Szostak KM; Grand L; Constandinou TG
    Front Neurosci; 2017; 11():665. PubMed ID: 29270103
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zebrafish as an animal model in epilepsy studies with multichannel EEG recordings.
    Cho SJ; Byun D; Nam TS; Choi SY; Lee BG; Kim MK; Kim S
    Sci Rep; 2017 Jun; 7(1):3099. PubMed ID: 28596539
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimal configuration of adhesive ECG patches suitable for long-term monitoring of a vectorcardiogram.
    Kabir MM; Perez-Alday EA; Thomas J; Sedaghat G; Tereshchenko LG
    J Electrocardiol; 2017; 50(3):342-348. PubMed ID: 28069275
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational Assessment of Neural Probe and Brain Tissue Interface under Transient Motion.
    Polanco M; Bawab S; Yoon H
    Biosensors (Basel); 2016 Jun; 6(2):27. PubMed ID: 27322338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.