These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 17027351)

  • 1. Comparison of the internal dynamics of globular proteins in the microcrystalline and rehydrated lyophilized states.
    Krushelnitsky A; Gogolev Y; Golbik R; Dahlquist F; Reichert D
    Biochim Biophys Acta; 2006 Oct; 1764(10):1639-45. PubMed ID: 17027351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-resolution solid-state 13C-NMR study on crystalline bovine heart cytochrome-c oxidase and lysozyme. Dynamic behavior of protein and detergent in the complex.
    Tuzi S; Shinzawa-Itoh K; Erata T; Naito A; Yoshikawa S; Saitô H
    Eur J Biochem; 1992 Sep; 208(3):713-20. PubMed ID: 1327766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-specific backbone dynamics from a crystalline protein by solid-state NMR spectroscopy.
    Giraud N; Böckmann A; Lesage A; Penin F; Blackledge M; Emsley L
    J Am Chem Soc; 2004 Sep; 126(37):11422-3. PubMed ID: 15366872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A solid-state NMR study of protein mobility in lyophilized protein-sugar powders.
    Lam YH; Bustami R; Phan T; Chan HK; Separovic F
    J Pharm Sci; 2002 Apr; 91(4):943-51. PubMed ID: 11948532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational flexibility of a microcrystalline globular protein: order parameters by solid-state NMR spectroscopy.
    Lorieau JL; McDermott AE
    J Am Chem Soc; 2006 Sep; 128(35):11505-12. PubMed ID: 16939274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different molecular motions in lyophilized protein formulations as determined by laboratory and rotating frame spin-lattice relaxation times.
    Yoshioka S; Aso Y; Kojima S
    J Pharm Sci; 2002 Oct; 91(10):2203-10. PubMed ID: 12226847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Backbone motions in a crystalline protein from field-dependent 2H-NMR relaxation and line-shape analysis.
    Mack JW; Usha MG; Long J; Griffin RG; Wittebort RJ
    Biopolymers; 2000 Jan; 53(1):9-18. PubMed ID: 10644947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cavity as a source of conformational fluctuation and high-energy state: high-pressure NMR study of a cavity-enlarged mutant of T4 lysozyme.
    Maeno A; Sindhikara D; Hirata F; Otten R; Dahlquist FW; Yokoyama S; Akasaka K; Mulder FA; Kitahara R
    Biophys J; 2015 Jan; 108(1):133-45. PubMed ID: 25564860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 13C and 15N NMR study of the hydration response of T4 lysozyme and alphaB-crystallin internal dynamics.
    Krushelnitsky A; Zinkevich T; Mukhametshina N; Tarasova N; Gogolev Y; Gnezdilov O; Fedotov V; Belton P; Reichert D
    J Phys Chem B; 2009 Jul; 113(29):10022-34. PubMed ID: 19603846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic structure of proteins in solid state. 1H and 13C NMR relaxation study.
    Krushelnitsky AG; Fedotov VD; Spevacek J; Straka J
    J Biomol Struct Dyn; 1996 Oct; 14(2):211-24. PubMed ID: 8913857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of hydration on the internal dynamics of hen egg white lysozyme in the dry state.
    Shah NK; Ludescher RD
    Photochem Photobiol; 1993 Aug; 58(2):169-74. PubMed ID: 8415906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How strongly does trehalose interact with lysozyme in the solid state? Insights from molecular dynamics simulation and inelastic neutron scattering.
    Lerbret A; Affouard F; Hédoux A; Krenzlin S; Siepmann J; Bellissent-Funel MC; Descamps M
    J Phys Chem B; 2012 Sep; 116(36):11103-16. PubMed ID: 22894179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme.
    Mulder FA; Hon B; Mittermaier A; Dahlquist FW; Kay LE
    J Am Chem Soc; 2002 Feb; 124(7):1443-51. PubMed ID: 11841314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin.
    Zech SG; Wand AJ; McDermott AE
    J Am Chem Soc; 2005 Jun; 127(24):8618-26. PubMed ID: 15954766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution NMR structure and backbone dynamics of the major cold-shock protein (CspA) from Escherichia coli: evidence for conformational dynamics in the single-stranded RNA-binding site.
    Feng W; Tejero R; Zimmerman DE; Inouye M; Montelione GT
    Biochemistry; 1998 Aug; 37(31):10881-96. PubMed ID: 9692981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water rotational relaxation and diffusion in hydrated lysozyme.
    Marchi M; Sterpone F; Ceccarelli M
    J Am Chem Soc; 2002 Jun; 124(23):6787-91. PubMed ID: 12047201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution solid-state MAS NMR of proteins-Crh as an example.
    Böckmann A
    Magn Reson Chem; 2007 Dec; 45 Suppl 1():S24-31. PubMed ID: 18081212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What is the average conformation of bacteriophage T4 lysozyme in solution? A domain orientation study using dipolar couplings measured by solution NMR.
    Goto NK; Skrynnikov NR; Dahlquist FW; Kay LE
    J Mol Biol; 2001 May; 308(4):745-64. PubMed ID: 11350172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydration water dynamics in biopolymers from NMR relaxation in the rotating frame.
    Blicharska B; Peemoeller H; Witek M
    J Magn Reson; 2010 Dec; 207(2):287-93. PubMed ID: 20961779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superslow backbone protein dynamics as studied by 1D solid-state MAS exchange NMR spectroscopy.
    Krushelnitsky A; Reichert D; Hempel G; Fedotov V; Schneider H; Yagodina L; Schulga A
    J Magn Reson; 1999 Jun; 138(2):244-55. PubMed ID: 10341128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.