These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 17027869)

  • 1. Highly sensitive real-time PCR assay for quantification of toxic cyanobacteria based on microcystin synthetase A gene.
    Furukawa K; Noda N; Tsuneda S; Saito T; Itayama T; Inamori Y
    J Biosci Bioeng; 2006 Aug; 102(2):90-6. PubMed ID: 17027869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of factors affecting the ratio of microcystin to chlorophyll-a in cyanobacterial blooms using real-time polymerase chain reaction.
    Ha JH; Hidaka T; Tsuno H
    Environ Toxicol; 2011 Feb; 26(1):21-8. PubMed ID: 19645032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PCR-based identification of microcystin-producing genotypes of different cyanobacterial genera.
    Hisbergues M; Christiansen G; Rouhiainen L; Sivonen K; Börner T
    Arch Microbiol; 2003 Dec; 180(6):402-10. PubMed ID: 14551674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular techniques for the early warning of toxic cyanobacteria blooms in freshwater lakes and rivers.
    Saker ML; Vale M; Kramer D; Vasconcelos VM
    Appl Microbiol Biotechnol; 2007 May; 75(2):441-9. PubMed ID: 17221193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplex PCR for detection of microcystins-producing cyanobacteria from freshwater samples.
    Valério E; Chambel L; Paulino S; Faria N; Pereira P; Tenreiro R
    Environ Toxicol; 2010 Jun; 25(3):251-60. PubMed ID: 19489064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of potentially toxic environmental Microcystis by individual and multiple PCR amplification of specific microcystin synthetase gene regions.
    Ouahid Y; Pérez-Silva G; del Campo FF
    Environ Toxicol; 2005 Jun; 20(3):235-42. PubMed ID: 15892074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of microcystin-producing and non-microcystin-producing Microcystis populations is correlated with nitrate concentration in a Japanese lake.
    Yoshida M; Yoshida T; Takashima Y; Hosoda N; Hiroishi S
    FEMS Microbiol Lett; 2007 Jan; 266(1):49-53. PubMed ID: 17092296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variability of the microcystin synthetase gene cluster in the genus Planktothrix (Oscillatoriales, Cyanobacteria).
    Mbedi S; Welker M; Fastner J; Wiedner C
    FEMS Microbiol Lett; 2005 Apr; 245(2):299-306. PubMed ID: 15837386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of microcystin synthetase genes in health food supplements containing the freshwater cyanobacterium Aphanizomenon flos-aquae.
    Saker ML; Jungblut AD; Neilan BA; Rawn DF; Vasconcelos VM
    Toxicon; 2005 Oct; 46(5):555-62. PubMed ID: 16098554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp.
    Kurmayer R; Christiansen G; Fastner J; Börner T
    Environ Microbiol; 2004 Aug; 6(8):831-41. PubMed ID: 15250885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PCR-based detection of microcystin-producing cyanobacterial blooms from Central India.
    Ghosh SK; Das PK; Bagchi SN
    Indian J Exp Biol; 2008 Jan; 46(1):66-70. PubMed ID: 18697574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a SYBR Green I real-time PCR for quantitative detection of Vibrio alginolyticus in seawater and seafood.
    Zhou S; Hou Z; Li N; Qin Q
    J Appl Microbiol; 2007 Nov; 103(5):1897-906. PubMed ID: 17953599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection and monitoring toxigenicity of cyanobacteria by application of molecular methods.
    Mankiewicz-Boczek J; Izydorczyk K; Romanowska-Duda Z; Jurczak T; Stefaniak K; Kokocinski M
    Environ Toxicol; 2006 Aug; 21(4):380-7. PubMed ID: 16841323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular characterization of cyanobacterial diversity and yearly fluctuations of Microcystin loads in a suburban Mediterranean Lake (Lake Pamvotis, Greece).
    Vareli K; Pilidis G; Mavrogiorgou MC; Briasoulis E; Sainis I
    J Environ Monit; 2009 Aug; 11(8):1506-12. PubMed ID: 19657535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity of microcystin-producing cyanobacteria in spatially isolated regions of Lake Erie.
    Rinta-Kanto JM; Wilhelm SW
    Appl Environ Microbiol; 2006 Jul; 72(7):5083-5. PubMed ID: 16820510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-based real-time detection and quantification of aeromonads from fresh water beaches on Lake Ontario.
    Khan IU; Loughborough A; Edge TA
    J Water Health; 2009 Jun; 7(2):312-23. PubMed ID: 19240357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Typing of toxinogenic Microcystis from environmental samples by multiplex PCR.
    Ouahid Y; Del Campo FF
    Appl Microbiol Biotechnol; 2009 Nov; 85(2):405-12. PubMed ID: 19802607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods for determining microcystins (peptide hepatotoxins) and microcystin-producing cyanobacteria.
    Sangolkar LN; Maske SS; Chakrabarti T
    Water Res; 2006 Nov; 40(19):3485-96. PubMed ID: 17014889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of Helicobacter pylori in sewage and water using a new quantitative PCR method with SYBR green.
    Nayak AK; Rose JB
    J Appl Microbiol; 2007 Nov; 103(5):1931-41. PubMed ID: 17953603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Microcystin Gene Copies to Determine Potentially-Toxic Blooms, Example from a Shallow Eutrophic Lake Peipsi.
    Panksep K; Tamm M; Mantzouki E; Rantala-Ylinen A; Laugaste R; Sivonen K; Tammeorg O; Kisand V
    Toxins (Basel); 2020 Mar; 12(4):. PubMed ID: 32225013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.