These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 17027874)
1. Isolation and characterization of Streptomyces sp. NL15-2K capable of degrading lignin-related aromatic compounds. Nishimura M; Ooi O; Davies J J Biosci Bioeng; 2006 Aug; 102(2):124-7. PubMed ID: 17027874 [TBL] [Abstract][Full Text] [Related]
2. Molecular cloning and characterization of vanillin dehydrogenase from Streptomyces sp. NL15-2K. Nishimura M; Kawakami S; Otsuka H BMC Microbiol; 2018 Oct; 18(1):154. PubMed ID: 30355315 [TBL] [Abstract][Full Text] [Related]
3. Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86. Mohan K; Phale PS Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188206 [No Abstract] [Full Text] [Related]
4. Synthesis of [13C]- and [14C]-labeled phenolic humus and lignin monomers. Ji R; Chen Z; Corvini PF; Kappler A; Brune A; Haider K; Schäffer A Chemosphere; 2005 Sep; 60(9):1169-81. PubMed ID: 16018886 [TBL] [Abstract][Full Text] [Related]
5. Microbial transformation of ferulic acid to vanillic acid by Streptomyces sannanensis MTCC 6637. Ghosh S; Sachan A; Sen SK; Mitra A J Ind Microbiol Biotechnol; 2007 Feb; 34(2):131-8. PubMed ID: 17043806 [TBL] [Abstract][Full Text] [Related]
6. Characterization in vitro and in vivo of the putative multigene 4-coumarate:CoA ligase network in Arabidopsis: syringyl lignin and sinapate/sinapyl alcohol derivative formation. Costa MA; Bedgar DL; Moinuddin SG; Kim KW; Cardenas CL; Cochrane FC; Shockey JM; Helms GL; Amakura Y; Takahashi H; Milhollan JK; Davin LB; Browse J; Lewis NG Phytochemistry; 2005 Sep; 66(17):2072-91. PubMed ID: 16099486 [TBL] [Abstract][Full Text] [Related]
7. A complete enzymatic recovery of ferulic acid from corn residues with extracellular enzymes from Neosartorya spinosa NRRL185. Shin HD; McClendon S; Le T; Taylor F; Chen RR Biotechnol Bioeng; 2006 Dec; 95(6):1108-15. PubMed ID: 16917955 [TBL] [Abstract][Full Text] [Related]
8. Purification and characterization of vanillin dehydrogenases from alkaliphile Micrococcus sp. TA1 and neutrophile Burkholderia cepacia TM1. Mitsui R; Hirota M; Tsuno T; Tanaka M FEMS Microbiol Lett; 2010 Feb; 303(1):41-7. PubMed ID: 20002191 [TBL] [Abstract][Full Text] [Related]
9. [Study on the chemical constituents from Fructus Toosendan]. Li F; Zhu X; Chen M; Zhou Y Zhong Yao Cai; 2010 Jun; 33(6):910-2. PubMed ID: 21049613 [TBL] [Abstract][Full Text] [Related]
10. A rapid colorimetric screening method for vanillic acid and vanillin-producing bacterial strains. Zamzuri NA; Abd-Aziz S; Rahim RA; Phang LY; Alitheen NB; Maeda T J Appl Microbiol; 2014 Apr; 116(4):903-10. PubMed ID: 24314059 [TBL] [Abstract][Full Text] [Related]
11. Preferential sorption of phenolic phytotoxins to soil: implications for altering the availability of allelochemicals. Tharayil N; Bhowmik PC; Xing B J Agric Food Chem; 2006 Apr; 54(8):3033-40. PubMed ID: 16608227 [TBL] [Abstract][Full Text] [Related]
12. Biodegradation of Lignin Monomers Vanillic, p-Coumaric, and Syringic Acid by the Bacterial Strain, Sphingobacterium sp. HY-H. Wang J; Liang J; Gao S Curr Microbiol; 2018 Sep; 75(9):1156-1164. PubMed ID: 29750329 [TBL] [Abstract][Full Text] [Related]
13. Molecular cloning and expression of the Streptomyces coniferyl alcohol dehydrogenase gene in Escherichia coli. Nishimura M Protein Expr Purif; 2013 May; 89(1):109-15. PubMed ID: 23500723 [TBL] [Abstract][Full Text] [Related]
14. Isolation and characterization of Streptomyces spp. strains F-6 and F-7 capable of decomposing alkali lignin. Yang YS; Zhou JT; Lu H; Yuan YL; Zhao LH Environ Technol; 2012 Dec; 33(22-24):2603-9. PubMed ID: 23437660 [TBL] [Abstract][Full Text] [Related]
15. Bioconversion of ferulic acid to vanillic acid by Halomonas elongata isolated from table-olive fermentation. Abdelkafi S; Sayadi S; Ben Ali Gam Z; Casalot L; Labat M FEMS Microbiol Lett; 2006 Sep; 262(1):115-20. PubMed ID: 16907747 [TBL] [Abstract][Full Text] [Related]
17. Authentication of the origin of vanillin using quantitative natural abundance 13C NMR. Tenailleau EJ; Lancelin P; Robins RJ; Akoka S J Agric Food Chem; 2004 Dec; 52(26):7782-7. PubMed ID: 15612755 [TBL] [Abstract][Full Text] [Related]
18. [Isolation and structural identification of chemical constituents from Selaginella tamariscina (Beauv.) Spring]. Bi YF; Zheng XK; Feng WS; Shi SP Yao Xue Xue Bao; 2004 Jan; 39(1):41-5. PubMed ID: 15127580 [TBL] [Abstract][Full Text] [Related]
19. [Non-alkaloid chemical constituents from Coptis chinensis]. Chen L; Wang L; Zhang Q; Zhang S; Ye W Zhongguo Zhong Yao Za Zhi; 2012 May; 37(9):1241-4. PubMed ID: 22803368 [TBL] [Abstract][Full Text] [Related]
20. Electroanalysis may be used in the vanillin biotechnological production. Giraud W; Mirabel M; Comtat M Appl Biochem Biotechnol; 2014 Feb; 172(4):1953-63. PubMed ID: 24307140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]