These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 17027983)
1. Identification of the zinc binding ligands and the catalytic residue in human aspartoacylase, an enzyme involved in Canavan disease. Herga S; Berrin JG; Perrier J; Puigserver A; Giardina T FEBS Lett; 2006 Oct; 580(25):5899-904. PubMed ID: 17027983 [TBL] [Abstract][Full Text] [Related]
2. Cloning of the human aspartoacylase cDNA and a common missense mutation in Canavan disease. Kaul R; Gao GP; Balamurugan K; Matalon R Nat Genet; 1993 Oct; 5(2):118-23. PubMed ID: 8252036 [TBL] [Abstract][Full Text] [Related]
3. 6-Pyruvoyl tetrahydropterin synthase, an enzyme with a novel type of active site involving both zinc binding and an intersubunit catalytic triad motif; site-directed mutagenesis of the proposed active center, characterization of the metal binding site and modelling of substrate binding. Bürgisser DM; Thöny B; Redweik U; Hess D; Heizmann CW; Huber R; Nar H J Mol Biol; 1995 Oct; 253(2):358-69. PubMed ID: 7563095 [TBL] [Abstract][Full Text] [Related]
4. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD. Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402 [TBL] [Abstract][Full Text] [Related]
5. Mutational analysis of aspartoacylase: implications for Canavan disease. Hershfield JR; Pattabiraman N; Madhavarao CN; Namboodiri MA Brain Res; 2007 May; 1148():1-14. PubMed ID: 17391648 [TBL] [Abstract][Full Text] [Related]
6. Substitution of Glu122 by glutamine revealed the function of the second water molecule as a proton donor in the binuclear metal enzyme creatininase. Yamashita K; Nakajima Y; Matsushita H; Nishiya Y; Yamazawa R; Wu YF; Matsubara F; Oyama H; Ito K; Yoshimoto T J Mol Biol; 2010 Mar; 396(4):1081-96. PubMed ID: 20043918 [TBL] [Abstract][Full Text] [Related]
7. Site-directed mutagenesis and molecular modelling studies show the role of Asp82 and cysteines in rat acylase 1, a member of the M20 family. Herga S; Brutus A; Vitale RM; Miche H; Perrier J; Puigserver A; Scaloni A; Giardina T Biochem Biophys Res Commun; 2005 May; 330(2):540-6. PubMed ID: 15796916 [TBL] [Abstract][Full Text] [Related]
8. Reexamination of aspartoacylase: is this human enzyme really a glycoprotein? Wang Q; Viola RE Arch Biochem Biophys; 2014 Apr; 548():66-73. PubMed ID: 24632142 [TBL] [Abstract][Full Text] [Related]
9. Structure of aspartoacylase, the brain enzyme impaired in Canavan disease. Bitto E; Bingman CA; Wesenberg GE; McCoy JG; Phillips GN Proc Natl Acad Sci U S A; 2007 Jan; 104(2):456-61. PubMed ID: 17194761 [TBL] [Abstract][Full Text] [Related]
10. A new T677C mutation of the aspartoacylase gene encodes for a protein with no enzymatic activity. Di Pietro V; Gambacurta A; Amorini AM; Finocchiaro A; D'Urso S; Ceccarelli L; Tavazzi B; Giardina B; Lazzarino G Clin Biochem; 2008 May; 41(7-8):611-5. PubMed ID: 18280251 [TBL] [Abstract][Full Text] [Related]
11. Purification and preliminary characterization of brain aspartoacylase. Moore RA; Le Coq J; Faehnle CR; Viola RE Arch Biochem Biophys; 2003 May; 413(1):1-8. PubMed ID: 12706335 [TBL] [Abstract][Full Text] [Related]
12. Long-range interaction between the enzyme active site and a distant allosteric site in the human mitochondrial NAD(P)+-dependent malic enzyme. Hsieh JY; Su KL; Ho PT; Hung HC Arch Biochem Biophys; 2009 Jul; 487(1):19-27. PubMed ID: 19464998 [TBL] [Abstract][Full Text] [Related]
13. The conserved methionine residue of the metzincins: a site-directed mutagenesis study. Hege T; Baumann U J Mol Biol; 2001 Nov; 314(2):181-6. PubMed ID: 11718552 [TBL] [Abstract][Full Text] [Related]
14. The HELLGH motif of rat liver dipeptidyl peptidase III is involved in zinc coordination and the catalytic activity of the enzyme. Fukasawa K; Fukasawa KM; Iwamoto H; Hirose J; Harada M Biochemistry; 1999 Jun; 38(26):8299-303. PubMed ID: 10387075 [TBL] [Abstract][Full Text] [Related]
15. Two-domain arginine kinase from the deep-sea clam Calyptogena kaikoi--evidence of two active domains. Uda K; Yamamoto K; Iwasaki N; Iwai M; Fujikura K; Ellington WR; Suzuki T Comp Biochem Physiol B Biochem Mol Biol; 2008 Oct; 151(2):176-82. PubMed ID: 18639645 [TBL] [Abstract][Full Text] [Related]
16. Enzymatic activity of Campylobacter jejuni hippurate hydrolase. Steele M; Marcone M; Gyles C; Chan VL; Odumeru J Protein Eng Des Sel; 2006 Jan; 19(1):17-25. PubMed ID: 16303789 [TBL] [Abstract][Full Text] [Related]
18. Catalytic mechanism of inulinase from Arthrobacter sp. S37. Kim KY; Nascimento AS; Golubev AM; Polikarpov I; Kim CS; Kang SI; Kim SI Biochem Biophys Res Commun; 2008 Jul; 371(4):600-5. PubMed ID: 18395004 [TBL] [Abstract][Full Text] [Related]
19. Cloning and characterization of a novel amidase from Paracoccus sp. M-1, showing aryl acylamidase and acyl transferase activities. Shen W; Chen H; Jia K; Ni J; Yan X; Li S Appl Microbiol Biotechnol; 2012 May; 94(4):1007-18. PubMed ID: 22101784 [TBL] [Abstract][Full Text] [Related]
20. Alpha-amino-beta-carboxymuconic-epsilon-semialdehyde decarboxylase (ACMSD) is a new member of the amidohydrolase superfamily. Li T; Iwaki H; Fu R; Hasegawa Y; Zhang H; Liu A Biochemistry; 2006 May; 45(21):6628-34. PubMed ID: 16716073 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]