These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17028132)

  • 41. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain.
    Lee KW; Briggs JM
    Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Singly and bifurcated hydrogen-bonded base-pairs in tRNA anticodon hairpins and ribozymes.
    Auffinger P; Westhof E
    J Mol Biol; 1999 Sep; 292(3):467-83. PubMed ID: 10497015
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Searching tRNA sequences for relatedness to aminoacyl-tRNA synthetase families.
    Nicholas HB; McClain WH
    J Mol Evol; 1995 May; 40(5):482-6. PubMed ID: 7783223
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural analysis of multifunctional peptide motifs in human bifunctional tRNA synthetase: identification of RNA-binding residues and functional implications for tandem repeats.
    Jeong EJ; Hwang GS; Kim KH; Kim MJ; Kim S; Kim KS
    Biochemistry; 2000 Dec; 39(51):15775-82. PubMed ID: 11123902
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Crystallization and preliminary X-ray characterization of the atypical glutaminyl-tRNA synthetase from Deinococcus radiodurans.
    Deniziak MA; Sauter C; Becker HD; Giegé R; Kern D
    Acta Crystallogr D Biol Crystallogr; 2004 Dec; 60(Pt 12 Pt 2):2361-3. PubMed ID: 15614972
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reinvestigation of aminoacyl-tRNA synthetase core complex by affinity purification-mass spectrometry reveals TARSL2 as a potential member of the complex.
    Kim K; Park SJ; Na S; Kim JS; Choi H; Kim YK; Paek E; Lee C
    PLoS One; 2013; 8(12):e81734. PubMed ID: 24312579
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure and Dynamics of the Human Multi-tRNA Synthetase Complex.
    Kim MH; Kang BS
    Subcell Biochem; 2022; 99():199-233. PubMed ID: 36151377
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Architectural underpinnings of the genetic code for glutamine.
    Corigliano EM; Perona JJ
    Biochemistry; 2009 Feb; 48(4):676-87. PubMed ID: 19128026
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Noncanonical secondary structure stabilizes mitochondrial tRNA(Ser(UCN)) by reducing the entropic cost of tertiary folding.
    Mustoe AM; Liu X; Lin PJ; Al-Hashimi HM; Fierke CA; Brooks CL
    J Am Chem Soc; 2015 Mar; 137(10):3592-9. PubMed ID: 25705930
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular network and functional implications of macromolecular tRNA synthetase complex.
    Han JM; Kim JY; Kim S
    Biochem Biophys Res Commun; 2003 Apr; 303(4):985-93. PubMed ID: 12684031
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Escherichia coli tRNA (Gm18) methyltransferase (TrmH) requires the correct localization of its methylation site (G18) in the D-loop for efficient methylation.
    Kohno Y; Ito A; Okamoto A; Yamagami R; Hirata A; Hori H
    J Biochem; 2023 Dec; 175(1):43-56. PubMed ID: 37844264
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Soaking suggests "alternative facts": Only co-crystallization discloses major ligand-induced interface rearrangements of a homodimeric tRNA-binding protein indicating a novel mode-of-inhibition.
    Ehrmann FR; Stojko J; Metz A; Debaene F; Barandun LJ; Heine A; Diederich F; Cianférani S; Reuter K; Klebe G
    PLoS One; 2017; 12(4):e0175723. PubMed ID: 28419165
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comprehensive data resources and analytical tools for pathological association of aminoacyl tRNA synthetases with cancer.
    Lee JH; You S; Hyeon do Y; Kang B; Kim H; Park KM; Han B; Hwang D; Kim S
    Database (Oxford); 2015; 2015():. PubMed ID: 25824651
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Pyrrolysyl-tRNA synthetase-tRNA(Pyl) structure reveals the molecular basis of orthogonality].
    Nozawa K; Ishitani R; Nureki O
    Seikagaku; 2010 Jul; 82(7):617-23. PubMed ID: 20715574
    [No Abstract]   [Full Text] [Related]  

  • 55. Transfer RNA: From pioneering crystallographic studies to contemporary tRNA biology.
    Fernández-Millán P; Schelcher C; Chihade J; Masquida B; Giegé P; Sauter C
    Arch Biochem Biophys; 2016 Jul; 602():95-105. PubMed ID: 26968773
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Using tRNA Scaffold to Assist RNA Crystallization.
    Lu C; Cai R; Grigg JC; Ke A
    Methods Mol Biol; 2021; 2323():39-47. PubMed ID: 34086272
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Aminoacyl-tRNA Synthetase and tRNA Expression Levels Are Deregulated in Cancer and Correlate Independently with Patient Survival.
    Sangha AK; Kantidakis T
    Curr Issues Mol Biol; 2022 Jul; 44(7):3001-3017. PubMed ID: 35877431
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural effects of modified ribonucleotides and magnesium in transfer RNAs.
    Xu Y; MacKerell AD; Nilsson L
    Bioorg Med Chem; 2016 Oct; 24(20):4826-4834. PubMed ID: 27364608
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Roles of Aminoacyl-tRNA Synthetases in Cancer.
    Zhou Z; Sun B; Nie A; Yu D; Bian M
    Front Cell Dev Biol; 2020; 8():599765. PubMed ID: 33330488
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Protein-tRNA Agarose Gel Retardation Assays for the Analysis of the N 6-threonylcarbamoyladenosine TcdA Function.
    Fernández FJ; Gómez S; Navas-Yuste S; López-Estepa M; Vega MC
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28671653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.