BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 17028272)

  • 1. The gene cluster for agmatine catabolism of Enterococcus faecalis: study of recombinant putrescine transcarbamylase and agmatine deiminase and a snapshot of agmatine deiminase catalyzing its reaction.
    Llácer JL; Polo LM; Tavárez S; Alarcón B; Hilario R; Rubio V
    J Bacteriol; 2007 Feb; 189(4):1254-65. PubMed ID: 17028272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insight into the transcarbamylase family: the structure of putrescine transcarbamylase, a key catalyst for fermentative utilization of agmatine.
    Polo LM; Gil-Ortiz F; Cantín A; Rubio V
    PLoS One; 2012; 7(2):e31528. PubMed ID: 22363663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of two families of bacterial enzymes in putrescine synthesis from agmatine via agmatine deiminase.
    Landete JM; Arena ME; Pardo I; Manca de Nadra MC; Ferrer S
    Int Microbiol; 2010 Dec; 13(4):169-77. PubMed ID: 21404211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lmo0036, an ornithine and putrescine carbamoyltransferase in Listeria monocytogenes, participates in arginine deiminase and agmatine deiminase pathways and mediates acid tolerance.
    Chen J; Cheng C; Xia Y; Zhao H; Fang C; Shan Y; Wu B; Fang W
    Microbiology (Reading); 2011 Nov; 157(Pt 11):3150-3161. PubMed ID: 21835877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of diamines by Enterococcus faecalis is mediated by an agmatine-putrescine antiporter.
    Driessen AJ; Smid EJ; Konings WN
    J Bacteriol; 1988 Oct; 170(10):4522-7. PubMed ID: 3139630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of the agmatine deiminase pathway in Enterococcus faecalis is activated by the AguR regulator and repressed by CcpA and PTS(Man) systems.
    Suárez C; Espariz M; Blancato VS; Magni C
    PLoS One; 2013; 8(10):e76170. PubMed ID: 24155893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Relationship among Tyrosine Decarboxylase and Agmatine Deiminase Pathways in
    Perez M; Ladero V; Del Rio B; Redruello B; de Jong A; Kuipers O; Kok J; Martin MC; Fernandez M; Alvarez MA
    Front Microbiol; 2017; 8():2107. PubMed ID: 29163401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymes of agmatine degradation and the control of their synthesis in Streptococcus faecalis.
    Simon JP; Stalon V
    J Bacteriol; 1982 Nov; 152(2):676-81. PubMed ID: 6290446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure and biochemical properties of putrescine carbamoyltransferase from Enterococcus faecalis: Assembly, active site, and allosteric regulation.
    Shi D; Yu X; Zhao G; Ho J; Lu S; Allewell NM; Tuchman M
    Proteins; 2012 May; 80(5):1436-47. PubMed ID: 22328207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene structure, organization, expression, and potential regulatory mechanisms of arginine catabolism in Enterococcus faecalis.
    Barcelona-Andrés B; Marina A; Rubio V
    J Bacteriol; 2002 Nov; 184(22):6289-300. PubMed ID: 12399499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An agmatine-inducible system for the expression of recombinant proteins in Enterococcus faecalis.
    Linares DM; Perez M; Ladero V; Del Rio B; Redruello B; Martin MC; Fernandez M; Alvarez MA
    Microb Cell Fact; 2014 Dec; 13():169. PubMed ID: 25471381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Putrescine biosynthesis in Lactococcus lactis is transcriptionally activated at acidic pH and counteracts acidification of the cytosol.
    Del Rio B; Linares D; Ladero V; Redruello B; Fernandez M; Martin MC; Alvarez MA
    Int J Food Microbiol; 2016 Nov; 236():83-9. PubMed ID: 27454783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequencing and transcriptional analysis of the biosynthesis gene cluster of putrescine-producing Lactococcus lactis.
    Ladero V; Rattray FP; Mayo B; Martín MC; Fernández M; Alvarez MA
    Appl Environ Microbiol; 2011 Sep; 77(18):6409-18. PubMed ID: 21803900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occurrence of agmatine pathway for putrescine synthesis in Selenomonas ruminatium.
    Liao S; Poonpairoj P; Ko KC; Takatuska Y; Yamaguchi Y; Abe N; Kaneko J; Kamio Y
    Biosci Biotechnol Biochem; 2008 Feb; 72(2):445-55. PubMed ID: 18256468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of enzyme synthesis in the oxalurate catabolic pathway of Streptococcus faecalis ATCC 11700: evidence for the existence of a third carbamate kinase.
    Vander Wauven C; Simon JP; Slos P; Stalon V
    Arch Microbiol; 1986 Sep; 145(4):386-90. PubMed ID: 3024601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the putrescine biosynthetic genes in Pseudomonas aeruginosa and characterization of agmatine deiminase and N-carbamoylputrescine amidohydrolase of the arginine decarboxylase pathway.
    Nakada Y; Itoh Y
    Microbiology (Reading); 2003 Mar; 149(Pt 3):707-714. PubMed ID: 12634339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ArcD1 and ArcD2 Arginine/Ornithine Exchangers Encoded in the Arginine Deiminase Pathway Gene Cluster of Lactococcus lactis.
    Noens EE; Kaczmarek MB; Żygo M; Lolkema JS
    J Bacteriol; 2015 Nov; 197(22):3545-53. PubMed ID: 26324452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Putrescine production via the agmatine deiminase pathway increases the growth of Lactococcus lactis and causes the alkalinization of the culture medium.
    del Rio B; Linares DM; Ladero V; Redruello B; Fernández M; Martin MC; Alvarez MA
    Appl Microbiol Biotechnol; 2015 Jan; 99(2):897-905. PubMed ID: 25341400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From Genome to Structure and Back Again: A Family Portrait of the Transcarbamylases.
    Shi D; Allewell NM; Tuchman M
    Int J Mol Sci; 2015 Aug; 16(8):18836-64. PubMed ID: 26274952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative survey of putrescine production from agmatine deamination in different bacteria.
    Landete JM; Arena ME; Pardo I; Manca de Nadra MC; Ferrer S
    Food Microbiol; 2008 Oct; 25(7):882-7. PubMed ID: 18721677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.