These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 17028273)

  • 1. Lysophosphatidylethanolamine is a substrate for the short-chain alcohol dehydrogenase SocA from Myxococcus xanthus.
    Avadhani M; Geyer R; White DC; Shimkets LJ
    J Bacteriol; 2006 Dec; 188(24):8543-50. PubMed ID: 17028273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and characterization of the socA locus which restores development to Myxococcus xanthus C-signaling mutants.
    Lee K; Shimkets LJ
    J Bacteriol; 1994 Apr; 176(8):2200-9. PubMed ID: 8157590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of a signaling defect during Myxococcus xanthus development.
    Lee K; Shimkets LJ
    J Bacteriol; 1996 Feb; 178(4):977-84. PubMed ID: 8576071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A tactile sensory system of Myxococcus xanthus involves an extracellular NAD(P)(+)-containing protein.
    Lee BU; Lee K; Mendez J; Shimkets LJ
    Genes Dev; 1995 Dec; 9(23):2964-73. PubMed ID: 7498792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myxococcus CsgA, Drosophila Sniffer, and human HSD10 are cardiolipin phospholipases.
    Boynton TO; Shimkets LJ
    Genes Dev; 2015 Sep; 29(18):1903-14. PubMed ID: 26338420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Myxococcus xanthus socE and csgA genes are regulated by the stringent response.
    Crawford EW; Shimkets LJ
    Mol Microbiol; 2000 Aug; 37(4):788-99. PubMed ID: 10972801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EspC is involved in controlling the timing of development in Myxococcus xanthus.
    Lee B; Higgs PI; Zusman DR; Cho K
    J Bacteriol; 2005 Jul; 187(14):5029-31. PubMed ID: 15995222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of fruA and csgA genes in gene expression during development of Myxococcus xanthus. Analysis by two-dimensional gel electrophoresis.
    Horiuchi T; Taoka M; Isobe T; Komano T; Inouye S
    J Biol Chem; 2002 Jul; 277(30):26753-60. PubMed ID: 11997385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methylation of FrzCD, a methyl-accepting taxis protein of Myxococcus xanthus, is correlated with factors affecting cell behavior.
    McBride MJ; Köhler T; Zusman DR
    J Bacteriol; 1992 Jul; 174(13):4246-57. PubMed ID: 1624419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stringent response in Myxococcus xanthus is regulated by SocE and the CsgA C-signaling protein.
    Crawford EW; Shimkets LJ
    Genes Dev; 2000 Feb; 14(4):483-92. PubMed ID: 10691740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AsgD, a new two-component regulator required for A-signalling and nutrient sensing during early development of Myxococcus xanthus.
    Cho K; Zusman DR
    Mol Microbiol; 1999 Oct; 34(2):268-81. PubMed ID: 10564471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the C-signal, a contact-dependent morphogen coordinating multiple developmental responses in Myxococcus xanthus.
    Lobedanz S; Søgaard-Andersen L
    Genes Dev; 2003 Sep; 17(17):2151-61. PubMed ID: 12923062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C-signal: a cell surface-associated morphogen that induces and co-ordinates multicellular fruiting body morphogenesis and sporulation in Myxococcus xanthus.
    Kruse T; Lobedanz S; Berthelsen NM; Søgaard-Andersen L
    Mol Microbiol; 2001 Apr; 40(1):156-68. PubMed ID: 11298283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intercellular C-signaling in Myxococcus xanthus involves a branched signal transduction pathway.
    Søgaard-Andersen L; Slack FJ; Kimsey H; Kaiser D
    Genes Dev; 1996 Mar; 10(6):740-54. PubMed ID: 8598300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression, purification, and characterization of a novel acidic Lipoxygenase from Myxococcus xanthus.
    Qian H; Xia B; He Y; Lu Z; Bie X; Zhao H; Zhang C; Lu F
    Protein Expr Purif; 2017 Oct; 138():13-17. PubMed ID: 28552618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of the Myxococcus xanthus argE gene.
    Harris BZ; Singer M
    J Bacteriol; 1998 Dec; 180(23):6412-4. PubMed ID: 9829957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic redundancy, proximity, and functionality of lspA, the target of antibiotic TA, in the Myxococcus xanthus producer strain.
    Xiao Y; Wall D
    J Bacteriol; 2014 Mar; 196(6):1174-83. PubMed ID: 24391051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function analysis of a bacterial tyrosine kinase, BtkB, in Myxococcus xanthus.
    Kimura Y; Kato T; Mori Y
    FEMS Microbiol Lett; 2012 Nov; 336(1):45-51. PubMed ID: 22861657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propionyl-CoA carboxylase of Myxococcus xanthus: catalytic properties and function in developing cells.
    Kimura Y; Kojyo T; Kimura I; Sato M
    Arch Microbiol; 1998 Sep; 170(3):179-84. PubMed ID: 9683657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GidA is an FAD-binding protein involved in development of Myxococcus xanthus.
    White DJ; Merod R; Thomasson B; Hartzell PL
    Mol Microbiol; 2001 Oct; 42(2):503-17. PubMed ID: 11703671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.