These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 17028323)

  • 1. Duplication of centromeric histone H3 (HTR12) gene in Arabidopsis halleri and A. lyrata, plant species with multiple centromeric satellite sequences.
    Kawabe A; Nasuda S; Charlesworth D
    Genetics; 2006 Dec; 174(4):2021-32. PubMed ID: 17028323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns of DNA variation among three centromere satellite families in Arabidopsis halleri and A. lyrata.
    Kawabe A; Charlesworth D
    J Mol Evol; 2007 Feb; 64(2):237-47. PubMed ID: 17160639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecotype-specific and chromosome-specific expansion of variant centromeric satellites in Arabidopsis thaliana.
    Ito H; Miura A; Takashima K; Kakutani T
    Mol Genet Genomics; 2007 Jan; 277(1):23-30. PubMed ID: 17033808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant.
    Talbert PB; Masuelli R; Tyagi AP; Comai L; Henikoff S
    Plant Cell; 2002 May; 14(5):1053-66. PubMed ID: 12034896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and genomic organization of centromeric repeats in Arabidopsis species.
    Kawabe A; Nasuda S
    Mol Genet Genomics; 2005 Feb; 272(6):593-602. PubMed ID: 15586291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential localization of the centromere-specific proteins in the major centromeric satellite of Arabidopsis thaliana.
    Shibata F; Murata M
    J Cell Sci; 2004 Jun; 117(Pt 14):2963-70. PubMed ID: 15161939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative gene mapping in Arabidopsis lyrata chromosomes 1 and 2 and the corresponding A. thaliana chromosome 1: recombination rates, rearrangements and centromere location.
    Hansson B; Kawabe A; Preuss S; Kuittinen H; Charlesworth D
    Genet Res; 2006 Apr; 87(2):75-85. PubMed ID: 16709272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The allopolyploid Arabidopsis kamchatica originated from multiple individuals of Arabidopsis lyrata and Arabidopsis halleri.
    Shimizu-Inatsugi R; Lihová J; Iwanaga H; Kudoh H; Marhold K; Savolainen O; Watanabe K; Yakubov VV; Shimizu KK
    Mol Ecol; 2009 Oct; 18(19):4024-48. PubMed ID: 19754506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymorphic chromosomal specificity of centromere satellite families in Arabidopsis halleri ssp. gemmifera.
    Kawabe A; Nasuda S
    Genetica; 2006 Mar; 126(3):335-42. PubMed ID: 16636927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transition to self-compatibility in Arabidopsis thaliana and evolution within S-haplotypes over 10 Myr.
    Bechsgaard JS; Castric V; Charlesworth D; Vekemans X; Schierup MH
    Mol Biol Evol; 2006 Sep; 23(9):1741-50. PubMed ID: 16782760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive evolution of the histone fold domain in centromeric histones.
    Cooper JL; Henikoff S
    Mol Biol Evol; 2004 Sep; 21(9):1712-8. PubMed ID: 15175412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recurrent Gene Duplication Leads to Diverse Repertoires of Centromeric Histones in Drosophila Species.
    Kursel LE; Malik HS
    Mol Biol Evol; 2017 Jun; 34(6):1445-1462. PubMed ID: 28333217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of gene duplication in the evolution of genomic imprinting revealed by molecular evolutionary analysis of the type I MADS-box gene family in Arabidopsis species.
    Yoshida T; Kawabe A
    PLoS One; 2013; 8(9):e73588. PubMed ID: 24039992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosome arrangement and nuclear architecture but not centromeric sequences are conserved between Arabidopsis thaliana and Arabidopsis lyrata.
    Berr A; Pecinka A; Meister A; Kreth G; Fuchs J; Blattner FR; Lysak MA; Schubert I
    Plant J; 2006 Dec; 48(5):771-83. PubMed ID: 17118036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cycles of satellite and transposon evolution in Arabidopsis centromeres.
    Wlodzimierz P; Rabanal FA; Burns R; Naish M; Primetis E; Scott A; Mandáková T; Gorringe N; Tock AJ; Holland D; Fritschi K; Habring A; Lanz C; Patel C; Schlegel T; Collenberg M; Mielke M; Nordborg M; Roux F; Shirsekar G; Alonso-Blanco C; Lysak MA; Novikova PY; Bousios A; Weigel D; Henderson IR
    Nature; 2023 Jun; 618(7965):557-565. PubMed ID: 37198485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Centromere locations and associated chromosome rearrangements in Arabidopsis lyrata and A. thaliana.
    Kawabe A; Hansson B; Hagenblad J; Forrest A; Charlesworth D
    Genetics; 2006 Jul; 173(3):1613-9. PubMed ID: 16648590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Centromere satellites from Arabidopsis populations: maintenance of conserved and variable domains.
    Hall SE; Kettler G; Preuss D
    Genome Res; 2003 Feb; 13(2):195-205. PubMed ID: 12566397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential rates of local and global homogenization in centromere satellites from Arabidopsis relatives.
    Hall SE; Luo S; Hall AE; Preuss D
    Genetics; 2005 Aug; 170(4):1913-27. PubMed ID: 15937135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres.
    Nagaki K; Talbert PB; Zhong CX; Dawe RK; Henikoff S; Jiang J
    Genetics; 2003 Mar; 163(3):1221-5. PubMed ID: 12663558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absence of positive selection on CenH3 in Luzula suggests that holokinetic chromosomes may suppress centromere drive.
    Zedek F; Bureš P
    Ann Bot; 2016 Dec; 118(7):1347-1352. PubMed ID: 27616209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.