BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 17028383)

  • 1. Influence of silicon on cobalt, zinc, and magnesium in baker's yeast, Saccharomyces cerevisiae.
    Brasser HJ; Krijger GC; van Meerten TG; Wolterbeek HT
    Biol Trace Elem Res; 2006 Aug; 112(2):175-89. PubMed ID: 17028383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the beneficial role of silicon to organisms: a case study on the importance of silicon chemistry to metal accumulation in yeast.
    Brasser HJ; Krijger GC; Wolterbeek HT
    Biol Trace Elem Res; 2008 Oct; 125(1):81-95. PubMed ID: 18473125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co2+ and Ni2+ resistance in Saccharomyces cerevisiae associated with a reduction in the accumulation of Mg2+.
    Joho M; Tarumi K; Inouhe M; Tohoyama H; Murayama T
    Microbios; 1991; 67(272-273):177-86. PubMed ID: 1779877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of genes whose expressions are enhanced or reduced in baker's yeast during fed-batch culture process using molasses medium by DNA microarray analysis.
    Shima J; Kuwazaki S; Tanaka F; Watanabe H; Yamamoto H; Nakajima R; Tokashiki T; Tamura H
    Int J Food Microbiol; 2005 Jun; 102(1):63-71. PubMed ID: 15925003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal conditions for accumulation of bioavailable iron in Saccharomyces cerevisiae cells.
    Gligic L; Vujovic N; Stevovic B; Manic J
    Boll Chim Farm; 2003 Oct; 142(8):330-2. PubMed ID: 15040461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, characterization, and growth rates of germanium silicalite-1 grown from clear solutions.
    Cheng CH; Juttu G; Mitchell SF; Shantz DF
    J Phys Chem B; 2006 Nov; 110(43):21430-7. PubMed ID: 17064091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anhydrobiosis in yeast: influence of calcium and magnesium ions on yeast resistance to dehydration-rehydration.
    Trofimova Y; Walker G; Rapoport A
    FEMS Microbiol Lett; 2010 Jul; 308(1):55-61. PubMed ID: 20487021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of germanium and silicon on bone mineralization.
    Seaborn CD; Nielsen FH
    Biol Trace Elem Res; 1994 Aug; 42(2):151-64. PubMed ID: 7981005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Uptake of cobalt, lead, and cadmium by baker's yeast].
    Heldwein R; Tromballa HW; Broda E
    Z Allg Mikrobiol; 1977; 17(4):299-308. PubMed ID: 329592
    [No Abstract]   [Full Text] [Related]  

  • 10. Synthesis, characterization, and growth rates of aluminum- and Ge,Al-substituted silicalite-1 materials grown from clear solutions.
    Cheng CH; Juttu G; Mitchell SF; Shantz DF
    J Phys Chem B; 2006 Nov; 110(45):22488-95. PubMed ID: 17091991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exchangeable zinc ions transiently accumulate in a vesicular compartment in the yeast Saccharomyces cerevisiae.
    Devirgiliis C; Murgia C; Danscher G; Perozzi G
    Biochem Biophys Res Commun; 2004 Oct; 323(1):58-64. PubMed ID: 15351701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth rate and medium composition strongly affect folate content in Saccharomyces cerevisiae.
    Hjortmo S; Patring J; Andlid T
    Int J Food Microbiol; 2008 Mar; 123(1-2):93-100. PubMed ID: 18234383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulation of intracellular magnesium levels in Saccharomyces cerevisiae with deletion of magnesium transporters.
    da Costa BM; Cornish K; Keasling JD
    Appl Microbiol Biotechnol; 2007 Nov; 77(2):411-25. PubMed ID: 17926032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetaldehyde addition throughout the growth phase alleviates the phenotypic effect of zinc deficiency in Saccharomyces cerevisiae.
    Cheraiti N; Sauvage FX; Salmon JM
    Appl Microbiol Biotechnol; 2008 Jan; 77(5):1093-109. PubMed ID: 17938904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cobalt distribution in keratinocyte cells indicates nuclear and perinuclear accumulation and interaction with magnesium and zinc homeostasis.
    Ortega R; Bresson C; Fraysse A; Sandre C; Devès G; Gombert C; Tabarant M; Bleuet P; Seznec H; Simionovici A; Moretto P; Moulin C
    Toxicol Lett; 2009 Jul; 188(1):26-32. PubMed ID: 19433266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth and adaptation of Saccharomyces cerevisiae at different cadmium concentrations.
    Minney SF; Quirk AV
    Microbios; 1985; 42(167):37-44. PubMed ID: 3889554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the interaction mechanism between zinc and Saccharomyces cerevisiae using combined SEM-EDX and XAFS.
    Chen C; Wang J
    Appl Microbiol Biotechnol; 2008 May; 79(2):293-9. PubMed ID: 18414849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of temperature and the active acidity of the medium on the metabolism of reserve carbohydrates and the survivability of baker's yeast].
    Chernysh VG; Bocharova NN
    Prikl Biokhim Mikrobiol; 1975; 11(5):662-8. PubMed ID: 241991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of bioprocess for production of copper-enriched biomass of industrially important microorganism Saccharomyces cerevisiae.
    Mrvcić J; Stanzer D; Stehlik-Tomas V; Skevin D; Grba S
    J Biosci Bioeng; 2007 Apr; 103(4):331-7. PubMed ID: 17502274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of comparative proteome analysis to reveal influence of cultivation conditions on asymmetric bioreduction of beta-keto ester by Saccharomyces cerevisiae.
    Lin J; Liu Q; Su E; Wei D; Yang S
    Appl Microbiol Biotechnol; 2008 Oct; 80(5):831-9. PubMed ID: 18679677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.