These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 17028590)
1. RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20. de la Mata M; Kornblihtt AR Nat Struct Mol Biol; 2006 Nov; 13(11):973-80. PubMed ID: 17028590 [TBL] [Abstract][Full Text] [Related]
2. Regulation of alternative splicing by a transcriptional enhancer through RNA pol II elongation. Kadener S; Fededa JP; Rosbash M; Kornblihtt AR Proc Natl Acad Sci U S A; 2002 Jun; 99(12):8185-90. PubMed ID: 12060763 [TBL] [Abstract][Full Text] [Related]
3. A novel SR-related protein specifically interacts with the carboxy-terminal domain (CTD) of RNA polymerase II through a conserved interaction domain. Tanner S; Stagljar I; Georgiev O; Schaffner W; Bourquin JP Biol Chem; 1997 Jun; 378(6):565-71. PubMed ID: 9224939 [TBL] [Abstract][Full Text] [Related]
4. The C-terminal domain of RNA Pol II helps ensure that editing precedes splicing of the GluR-B transcript. Ryman K; Fong N; Bratt E; Bentley DL; Ohman M RNA; 2007 Jul; 13(7):1071-8. PubMed ID: 17525170 [TBL] [Abstract][Full Text] [Related]
5. Influence of polymerase II processivity on alternative splicing depends on splice site strength. Nogués G; Muñoz MJ; Kornblihtt AR J Biol Chem; 2003 Dec; 278(52):52166-71. PubMed ID: 14530256 [TBL] [Abstract][Full Text] [Related]
6. Regulated expression and RNA processing of transcripts from the Srp20 splicing factor gene during the cell cycle. Jumaa H; Guénet JL; Nielsen PJ Mol Cell Biol; 1997 Jun; 17(6):3116-24. PubMed ID: 9154810 [TBL] [Abstract][Full Text] [Related]
7. RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Misteli T; Spector DL Mol Cell; 1999 Jun; 3(6):697-705. PubMed ID: 10394358 [TBL] [Abstract][Full Text] [Related]
8. The carboxy terminal domain of RNA polymerase II and alternative splicing. Muñoz MJ; de la Mata M; Kornblihtt AR Trends Biochem Sci; 2010 Sep; 35(9):497-504. PubMed ID: 20418102 [TBL] [Abstract][Full Text] [Related]
9. A slow RNA polymerase II affects alternative splicing in vivo. de la Mata M; Alonso CR; Kadener S; Fededa JP; Blaustein M; Pelisch F; Cramer P; Bentley D; Kornblihtt AR Mol Cell; 2003 Aug; 12(2):525-32. PubMed ID: 14536091 [TBL] [Abstract][Full Text] [Related]
10. Alternative splicing of the multidrug resistance protein 1/ATP binding cassette transporter subfamily gene in ovarian cancer creates functional splice variants and is associated with increased expression of the splicing factors PTB and SRp20. He X; Ee PL; Coon JS; Beck WT Clin Cancer Res; 2004 Jul; 10(14):4652-60. PubMed ID: 15269137 [TBL] [Abstract][Full Text] [Related]
11. Carboxy terminal domain of the largest subunit of RNA polymerase II of Leishmania donovani has an unusually low number of phosphorylation sites. Dasgupta A; Sharma S; Das A; Sarkar D; Majumder H Med Sci Monit; 2002 May; 8(5):CR341-50. PubMed ID: 12011776 [TBL] [Abstract][Full Text] [Related]
12. Transcriptional activators differ in their abilities to control alternative splicing. Nogues G; Kadener S; Cramer P; Bentley D; Kornblihtt AR J Biol Chem; 2002 Nov; 277(45):43110-4. PubMed ID: 12221105 [TBL] [Abstract][Full Text] [Related]
13. The splicing factor SRp20 modifies splicing of its own mRNA and ASF/SF2 antagonizes this regulation. Jumaa H; Nielsen PJ EMBO J; 1997 Aug; 16(16):5077-85. PubMed ID: 9305649 [TBL] [Abstract][Full Text] [Related]
14. Modulating alternative splicing by cotranscriptional cleavage of nascent intronic RNA. Gromak N; Talotti G; Proudfoot NJ; Pagani F RNA; 2008 Feb; 14(2):359-66. PubMed ID: 18065715 [TBL] [Abstract][Full Text] [Related]
15. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD. Schneider S; Pei Y; Shuman S; Schwer B Mol Cell Biol; 2010 May; 30(10):2353-64. PubMed ID: 20231361 [TBL] [Abstract][Full Text] [Related]
16. RNA polymerase II carboxy-terminal domain phosphorylation is required for cotranscriptional pre-mRNA splicing and 3'-end formation. Bird G; Zorio DA; Bentley DL Mol Cell Biol; 2004 Oct; 24(20):8963-9. PubMed ID: 15456870 [TBL] [Abstract][Full Text] [Related]
17. The last CTD repeat of the mammalian RNA polymerase II large subunit is important for its stability. Chapman RD; Palancade B; Lang A; Bensaude O; Eick D Nucleic Acids Res; 2004; 32(1):35-44. PubMed ID: 14704341 [TBL] [Abstract][Full Text] [Related]
18. Expression of the C-terminal domain of novel human SR-A1 protein: interaction with the CTD domain of RNA polymerase II. Katsarou ME; Papakyriakou A; Katsaros N; Scorilas A Biochem Biophys Res Commun; 2005 Aug; 334(1):61-8. PubMed ID: 15992770 [TBL] [Abstract][Full Text] [Related]
19. A minimal length between tau exon 10 and 11 is required for correct splicing of exon 10. Yu Q; Guo J; Zhou J J Neurochem; 2004 Jul; 90(1):164-72. PubMed ID: 15198676 [TBL] [Abstract][Full Text] [Related]
20. Antagonistic effects of T-Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing. Kadener S; Cramer P; Nogués G; Cazalla D; de la Mata M; Fededa JP; Werbajh SE; Srebrow A; Kornblihtt AR EMBO J; 2001 Oct; 20(20):5759-68. PubMed ID: 11598018 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]