These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 17028694)
1. Protein-bound chromophores astaxanthin and phytochromobilin: excited state quantum chemical studies. Durbeej B; Eriksson LA Phys Chem Chem Phys; 2006 Sep; 8(35):4053-71. PubMed ID: 17028694 [TBL] [Abstract][Full Text] [Related]
2. Relative ground and excited-state pKa values of phytochromobilin in the photoactivation of phytochrome: a computational study. Borg OA; Durbeej B J Phys Chem B; 2007 Oct; 111(39):11554-65. PubMed ID: 17845025 [TBL] [Abstract][Full Text] [Related]
3. Excited-state modeling of the astaxanthin dimer predicts a minor contribution from exciton coupling to the bathochromic shift in crustacyanin. Strambi A; Durbeej B J Phys Chem B; 2009 Apr; 113(15):5311-7. PubMed ID: 19317475 [TBL] [Abstract][Full Text] [Related]
4. Which factors determine the acidity of the phytochromobilin chromophore of plant phytochrome? Anders Borg O; Durbeej B Phys Chem Chem Phys; 2008 May; 10(18):2528-37. PubMed ID: 18446253 [TBL] [Abstract][Full Text] [Related]
5. Resonance raman spectroscopy and quantum chemical modeling studies of protein-astaxanthin interactions in alpha-crustacyanin (major blue carotenoprotein complex in carapace of lobster, Homarus gammarus). Weesie RJ; Merlin JC; de Groot HJ; Britton G; Lugtenburg J; Jansen FJ; Cornard JP Biospectroscopy; 1999; 5(6):358-70. PubMed ID: 10604288 [TBL] [Abstract][Full Text] [Related]
6. Spectroscopy and quantum chemical modeling reveal a predominant contribution of excitonic interactions to the bathochromic shift in alpha-crustacyanin, the blue carotenoprotein in the carapace of the lobster Homarus gammarus. van Wijk AA; Spaans A; Uzunbajakava N; Otto C; de Groot HJ; Lugtenburg J; Buda F J Am Chem Soc; 2005 Feb; 127(5):1438-45. PubMed ID: 15686376 [TBL] [Abstract][Full Text] [Related]
7. Resonance raman analysis of chromophore structure in the lumi-R photoproduct of phytochrome. Andel F; Lagarias JC; Mathies RA Biochemistry; 1996 Dec; 35(50):15997-6008. PubMed ID: 8973170 [TBL] [Abstract][Full Text] [Related]
8. Initial excited-state relaxation of the bilin chromophores of phytochromes: a computational study. Strambi A; Durbeej B Photochem Photobiol Sci; 2011 Apr; 10(4):569-79. PubMed ID: 21253657 [TBL] [Abstract][Full Text] [Related]
9. On the primary event of phytochrome: quantum chemical comparison of photoreactions at C4, C10 and C15. Durbeej B Phys Chem Chem Phys; 2009 Mar; 11(9):1354-61. PubMed ID: 19224036 [TBL] [Abstract][Full Text] [Related]
10. Determination of the chromophore structures in the photoinduced reaction cycle of phytochrome. Mroginski MA; Murgida DH; von Stetten D; Kneip C; Mark F; Hildebrandt P J Am Chem Soc; 2004 Dec; 126(51):16734-5. PubMed ID: 15612706 [TBL] [Abstract][Full Text] [Related]
11. Origin of the bathochromic shift of astaxanthin in lobster protein: 2D electronic spectroscopy investigation of β-crustacyanin. Christensson N; Žídek K; Magdaong NC; LaFountain AM; Frank HA; Zigmantas D J Phys Chem B; 2013 Sep; 117(38):11209-19. PubMed ID: 23510436 [TBL] [Abstract][Full Text] [Related]
12. Protonation of the chromophore in the photoactive yellow protein. Leenders EJ; Guidoni L; Röthlisberger U; Vreede J; Bolhuis PG; Meijer EJ J Phys Chem B; 2007 Apr; 111(14):3765-73. PubMed ID: 17388542 [TBL] [Abstract][Full Text] [Related]
13. Photochromic ruthenium sulfoxide complexes: evidence for isomerization through a conical intersection. McClure BA; Mockus NV; Butcher DP; Lutterman DA; Turro C; Petersen JL; Rack JJ Inorg Chem; 2009 Sep; 48(17):8084-91. PubMed ID: 19435341 [TBL] [Abstract][Full Text] [Related]
15. Theoretical spectroscopy of astaxanthin in crustacyanin proteins: absorption, circular dichroism, and nuclear magnetic resonance. Neugebauer J; Veldstra J; Buda F J Phys Chem B; 2011 Mar; 115(12):3216-25. PubMed ID: 21391640 [TBL] [Abstract][Full Text] [Related]
16. Assembly of Agrobacterium phytochromes Agp1 and Agp2 with doubly locked bilin chromophores. Inomata K; Khawn H; Chen LY; Kinoshita H; Zienicke B; Molina I; Lamparter T Biochemistry; 2009 Mar; 48(12):2817-27. PubMed ID: 19253981 [TBL] [Abstract][Full Text] [Related]
17. Mechanistic aspects of proton chain transfer in the green fluorescent protein. Part II. A comparison of minimal quantum chemical models. Wang S; Smith SC Phys Chem Chem Phys; 2007 Jan; 9(4):452-8. PubMed ID: 17216060 [TBL] [Abstract][Full Text] [Related]
18. Chromophore/DNA interactions: femto- to nanosecond spectroscopy, NMR structure, and electron transfer theory. von Feilitzsch T; Tuma J; Neubauer H; Verdier L; Haselsberger R; Feick R; Gurzadyan G; Voityuk AA; Griesinger C; Michel-Beyerle ME J Phys Chem B; 2008 Jan; 112(3):973-89. PubMed ID: 18163608 [TBL] [Abstract][Full Text] [Related]
19. Combined experimental-theoretical study of the lower excited singlet states of paravinyl phenol, an analog of the paracoumaric acid chromophore. de Groot M; Buma WJ; Gromov EV; Burghardt I; Köppel H; Cederbaum LS J Chem Phys; 2006 Nov; 125(20):204303. PubMed ID: 17144696 [TBL] [Abstract][Full Text] [Related]
20. Photochemistry of visual pigment chromophore models by ab initio molecular dynamics. Weingart O; Schapiro I; Buss V J Phys Chem B; 2007 Apr; 111(14):3782-8. PubMed ID: 17388554 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]