These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 170287)

  • 1. Surface and bulk characteristics of a polyether urethane for artificial hearts.
    Boretos JW; Pierce WS; Baier RE; Leroy AF; Donachy HJ
    J Biomed Mater Res; 1975 May; 9(3):327-40. PubMed ID: 170287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ESCA studies of surface chemical composition of segmented polyurethanes.
    Paik Sung CS; Hu CB
    J Biomed Mater Res; 1979 Mar; 13(2):161-71. PubMed ID: 429388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo evaluations of a new thromboresistant polyurethane for artificial heart blood pumps.
    Farrar DJ; Litwak P; Lawson JH; Ward RS; White KA; Robinson AJ; Rodvien R; Hill JD
    J Thorac Cardiovasc Surg; 1988 Feb; 95(2):191-200. PubMed ID: 3339889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical stability of elastomeric polymers for blood pump applications.
    Hayashi K; Takano H; Matsuda T; Umezu M
    J Biomed Mater Res; 1985 Feb; 19(2):179-93. PubMed ID: 4077879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Surface properties and characteristics of PU-PTHF/MDI/HPC poly(ether)urethane for cardiovascular prosthesis].
    Butnaru M; Dimitriu CD; Macocinschi D
    Rev Med Chir Soc Med Nat Iasi; 2010; 114(4):1246-53. PubMed ID: 21500486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microtextured materials for circulatory support devices: preliminary studies.
    Zapanta CM; Griffith JW; Hess GD; Doxtater BJ; Khalapyan T; Pae WE; Rosenberg G
    ASAIO J; 2006; 52(1):17-23. PubMed ID: 16436885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Totally implantable artificial hearts and left ventricular assist devices: selecting impermeable polycarbonate urethane to manufacture ventricles.
    Yang M; Zhang Z; Hahn C; Laroche G; King MW; Guidoin R
    J Biomed Mater Res; 1999; 48(1):13-23. PubMed ID: 10029144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyether polyurethanes: biostable or not?
    Stokes KB
    J Biomater Appl; 1988 Oct; 3(2):228-59. PubMed ID: 3204495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo biostability of polyether polyurethanes with fluoropolymer surface modifying endgroups: resistance to biologic oxidation and stress cracking.
    Ward B; Anderson J; McVenes R; Stokes K
    J Biomed Mater Res A; 2006 Dec; 79(4):827-35. PubMed ID: 16886223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonthrombogenic, adhesive cellular lining for left ventricular assist devices.
    Scott-Burden T; Tock CL; Bosely JP; Clubb FJ; Parnis SM; Schwarz JJ; Engler DA; Frazier OH; Casscells SW
    Circulation; 1998 Nov; 98(19 Suppl):II339-45. PubMed ID: 9852924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo biostability of polyether polyurethanes with polyethylene oxide surface-modifying end groups; resistance to biologic oxidation and stress cracking.
    Ebert M; Ward B; Anderson J; McVenes R; Stokes K
    J Biomed Mater Res A; 2005 Oct; 75(1):175-84. PubMed ID: 16041797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(ether urethane) networks from renewable resources as candidate biomaterials: synthesis and characterization.
    Lligadas G; Ronda JC; Galià M; Cádiz V
    Biomacromolecules; 2007 Feb; 8(2):686-92. PubMed ID: 17291093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative blood compatibility of polyether vs polycarbonate urethanes by epifluorescent video microscopy.
    Mizumoto D; Nojiri C; Inomata Y; Onishi M; Waki M; Kido T; Sugiyama T; Senshu K; Uchida K; Sakai K; Akutsu T
    ASAIO J; 1997; 43(5):M500-4. PubMed ID: 9360093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scanning electron microscopic evaluation of the surfaces of artificial hearts.
    Coleman D; Lawson J; Kolff WJ
    Artif Organs; 1978 May; 2(2):166-72. PubMed ID: 687174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties and biological interactions of polyurethane anionomers: effect of sulfonate incorporation.
    Grasel TG; Cooper SL
    J Biomed Mater Res; 1989 Mar; 23(3):311-38. PubMed ID: 2715157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo biostability of shore 55D polyether polyurethanes with and without fluoropolymer surface modifying endgroups.
    Ward R; Anderson J; McVenes R; Stokes K
    J Biomed Mater Res A; 2006 Dec; 79(4):836-45. PubMed ID: 16886224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of alkyl grafting on surface properties and blood compatibility of polyurethane block copolymers.
    Grasel TG; Pierce JA; Cooper SL
    J Biomed Mater Res; 1987 Jul; 21(7):815-42. PubMed ID: 3611144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of blood compatible elastomers. II. Performance of Avcothane blood contact surfaces in experimental animal implantations.
    Nyilas E
    J Biomed Mater Res; 1972; 6(4):97-127. PubMed ID: 5045267
    [No Abstract]   [Full Text] [Related]  

  • 19. In vivo biocompatibility of sulfonated PEO-grafted polyurethanes for polymer heart valve and vascular graft.
    Han DK; Park K; Park KD; Ahn KD; Kim YH
    Artif Organs; 2006 Dec; 30(12):955-9. PubMed ID: 17181836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub-micron texturing for reducing platelet adhesion to polyurethane biomaterials.
    Milner KR; Snyder AJ; Siedlecki CA
    J Biomed Mater Res A; 2006 Mar; 76(3):561-70. PubMed ID: 16278867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.