These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 170287)
21. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers. Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849 [TBL] [Abstract][Full Text] [Related]
22. Ex vivo interactions and surface property relationships of polyetherurethanes. Lelah MD; Grasel TG; Pierce JA; Cooper SL J Biomed Mater Res; 1986 Apr; 20(4):433-68. PubMed ID: 3700440 [TBL] [Abstract][Full Text] [Related]
23. Biostability of polyurethanes. Hennig E; John A; Zartnack F; Lemm W; Bücherl ES; Wick G; Gerlach K Z Exp Chir Transplant Kunstliche Organe; 1989; 22(4):204-20. PubMed ID: 2781835 [TBL] [Abstract][Full Text] [Related]
24. Interactions at the blood-polymer interface. Lyman DJ; Kim SW Fed Proc; 1971; 30(5):1658-62. PubMed ID: 5119370 [No Abstract] [Full Text] [Related]
25. Platelet and fibrinogen survival in calves implanted with artificial heart and ventricular assist device--correlation with autopsy findings. al-Mondhiry H; Pae WE; Miller CA; Pierce WS Thromb Haemost; 1992 Apr; 67(4):413-6. PubMed ID: 1631788 [TBL] [Abstract][Full Text] [Related]
26. Synthesis and hemocompatibility of biomembrane mimicing poly(carbonate urethane)s containing fluorinated alkyl phosphatidylcholine side groups. Tan H; Liu J; Li J; Jiang X; Xie X; Zhong Y; Fu Q Biomacromolecules; 2006 Sep; 7(9):2591-9. PubMed ID: 16961322 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of the fibrinolytic system in calves implanted with an artificial heart and ventricular assist device. al-Mondhiry H; Pae WE; Pierce WS ASAIO J; 1995; 41(1):95-9. PubMed ID: 7727829 [TBL] [Abstract][Full Text] [Related]
28. Blood compatibility of PEO grafted polyurethane and HEMA/styrene block copolymer surfaces. Nojiri C; Okano T; Jacobs HA; Park KD; Mohammad SF; Olsen DB; Kim SW J Biomed Mater Res; 1990 Sep; 24(9):1151-71. PubMed ID: 2211743 [TBL] [Abstract][Full Text] [Related]
29. Biocompatibility of a polyether urethane, polypropylene oxide, and a polyether polyester copolymer. A qualitative and quantitative study of three alloplastic tympanic membrane materials in the rat middle ear. Bakker D; van Blitterswijk CA; Hesseling SC; Koerten HK; Kuijpers W; Grote JJ J Biomed Mater Res; 1990 Apr; 24(4):489-515. PubMed ID: 2347874 [TBL] [Abstract][Full Text] [Related]
30. Biodegradation of a polyurethane in vitro. Phua SK; Castillo E; Anderson JM; Hiltner A J Biomed Mater Res; 1987 Feb; 21(2):231-46. PubMed ID: 3818683 [TBL] [Abstract][Full Text] [Related]
31. [Insight into surface structure and hemocompatibility of fluorinated poly(ether urethane)s and poly(ether urethane)s blends]. Tan H; Li J; Xie X; Guo M; Fu Q; Zhong Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):566-9. PubMed ID: 15357433 [TBL] [Abstract][Full Text] [Related]
32. Heparinizable segmented polyurethanes containing poly-amidoamine blocks. Tanzi MC; Levi M J Biomed Mater Res; 1989 Aug; 23(8):863-81. PubMed ID: 2777830 [TBL] [Abstract][Full Text] [Related]
33. Growth properties of cultured human endothelial cells on differently coated artificial heart materials. Zilla P; Fasol R; Grimm M; Fischlein T; Eberl T; Preiss P; Krupicka O; von Oppell U; Deutsch M J Thorac Cardiovasc Surg; 1991 Apr; 101(4):671-80. PubMed ID: 1901123 [TBL] [Abstract][Full Text] [Related]
34. A comparsion of polyurethane and silastic artificial hearts in 10 long survival experiments in calves. Lawson JH; Olsen DB; Hershgold E; Kolff J; Hadfield K; Kolff WJ Trans Am Soc Artif Intern Organs; 1975; 21():368-73. PubMed ID: 124979 [No Abstract] [Full Text] [Related]
35. Phase studies of a urethane model compound and polyether macroglycols by infrared spectroscopy and the relationship between eutectic composition of soft segment and blood compatibility. Isama K; Kojima S; Nakamura A J Biomed Mater Res; 1993 Apr; 27(4):539-45. PubMed ID: 8463355 [TBL] [Abstract][Full Text] [Related]
36. Physicochemical characterization and in vivo blood tolerability of cast and extruded Biomer. Lelah MD; Lambrecht LK; Young BR; Cooper SL J Biomed Mater Res; 1983 Jan; 17(1):1-22. PubMed ID: 6826568 [TBL] [Abstract][Full Text] [Related]
37. Effects of implantation on the mechanical properties of the polyurethane diaphragm of left ventricular assist devices. Hayashi K; Matsuda T; Takano H; Umezu M; Taenaka Y; Nakamura T Biomaterials; 1985 Mar; 6(2):82-8. PubMed ID: 4005358 [TBL] [Abstract][Full Text] [Related]
38. Polish artificial heart program. El Fray M; Czugala M Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2012; 4(3):322-8. PubMed ID: 22110047 [TBL] [Abstract][Full Text] [Related]
39. Multiscale analysis of surface thrombosis in vivo in a left ventricular assist system. Yamanaka H; Rosenberg G; Weiss WJ; Snyder AJ; Zapanta CM; Siedlecki CA ASAIO J; 2005; 51(5):567-77. PubMed ID: 16322720 [TBL] [Abstract][Full Text] [Related]
40. Haemocompatibility of segmented polyurethanes investigated in vivo. Fiala V; Sotolová O; Trbusek V; Vrbová M; Vasků A; Urbánek P; Vasků J; Lukás J; Houska M; Tyrácková V Biomaterials; 1987 Jul; 8(4):259-64. PubMed ID: 3663803 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]