These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 17028971)
1. Morgane, a new LTR retrotransposon group, and its subfamilies in wheats. Sabot F; Sourdille P; Chantret N; Bernard M Genetica; 2006; 128(1-3):439-47. PubMed ID: 17028971 [TBL] [Abstract][Full Text] [Related]
2. Advent of a new retrotransposon structure: the long form of the Veju elements. Sabot F; Sourdille P; Bernard M Genetica; 2005 Nov; 125(2-3):325-32. PubMed ID: 16247703 [TBL] [Abstract][Full Text] [Related]
3. [The impact of Ty3-gypsy group retrotransposon Lila on D-genome specificity of wheat Triticum aestivum L]. Shcherban' AB; Adonina IG; Salina EA Mol Biol (Mosk); 2012; 46(4):584-93. PubMed ID: 23113346 [TBL] [Abstract][Full Text] [Related]
5. Gene-containing regions of wheat and the other grass genomes. Sandhu D; Gill KS Plant Physiol; 2002 Mar; 128(3):803-11. PubMed ID: 11891237 [TBL] [Abstract][Full Text] [Related]
6. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Petersen G; Seberg O; Yde M; Berthelsen K Mol Phylogenet Evol; 2006 Apr; 39(1):70-82. PubMed ID: 16504543 [TBL] [Abstract][Full Text] [Related]
7. Non-LTR retrotransposons in the African malaria mosquito, Anopheles gambiae: unprecedented diversity and evidence of recent activity. Biedler J; Tu Z Mol Biol Evol; 2003 Nov; 20(11):1811-25. PubMed ID: 12832632 [TBL] [Abstract][Full Text] [Related]
8. Effective isolation of retrotransposons and repetitive DNA families from the wheat genome. Tomita M; Asao M; Kuraki A J Integr Plant Biol; 2010 Jul; 52(7):679-91. PubMed ID: 20590997 [TBL] [Abstract][Full Text] [Related]
9. Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Paux E; Roger D; Badaeva E; Gay G; Bernard M; Sourdille P; Feuillet C Plant J; 2006 Nov; 48(3):463-74. PubMed ID: 17010109 [TBL] [Abstract][Full Text] [Related]
10. A LTR copia retrotransposon and Mutator transposons interrupt Pgip genes in cultivated and wild wheats. Di Giovanni M; Cenci A; Janni M; D'Ovidio R Theor Appl Genet; 2008 Apr; 116(6):859-67. PubMed ID: 18301877 [TBL] [Abstract][Full Text] [Related]
11. Phylogenetic relationships among diploid Aegilops species inferred from 5S rDNA units. Baum BR; Edwards T; Johnson DA Mol Phylogenet Evol; 2009 Oct; 53(1):34-44. PubMed ID: 19527789 [TBL] [Abstract][Full Text] [Related]
12. Identification of an active LTR retrotransposon in rice. Picault N; Chaparro C; Piegu B; Stenger W; Formey D; Llauro C; Descombin J; Sabot F; Lasserre E; Meynard D; Guiderdoni E; Panaud O Plant J; 2009 Jun; 58(5):754-65. PubMed ID: 19187041 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide characterization of long terminal repeat -retrotransposons in apple reveals the differences in heterogeneity and copy number between Ty1-copia and Ty3-gypsy retrotransposons. Sun HY; Dai HY; Zhao GL; Ma Y; Ou CQ; Li H; Li LG; Zhang ZH J Integr Plant Biol; 2008 Sep; 50(9):1130-9. PubMed ID: 18844781 [TBL] [Abstract][Full Text] [Related]
14. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements. Staton SE; Bakken BH; Blackman BK; Chapman MA; Kane NC; Tang S; Ungerer MC; Knapp SJ; Rieseberg LH; Burke JM Plant J; 2012 Oct; 72(1):142-53. PubMed ID: 22691070 [TBL] [Abstract][Full Text] [Related]
15. [Phylogeny of Triticum L. and Aegilops L. genuses inferred from a comparative analysis of nucleotide sequences in promoter rDNA regions of individual species]. Vakhitov VA; Chemeris AV; Sabirzhanov BE; Akhunov ED; Kulikov AM; Nikonorov IuM; Gimalov FR; Bikbulatova SM; Baĭmiev AKh Genetika; 2003 Jan; 39(1):5-17. PubMed ID: 12624928 [TBL] [Abstract][Full Text] [Related]
16. Study on the evolution of the grande retrotransposon in the zea genus. García-Martínez J; Martínez-Izquierdo JA Mol Biol Evol; 2003 May; 20(5):831-41. PubMed ID: 12679538 [TBL] [Abstract][Full Text] [Related]
17. Molecular characterization of the Sasanda LTR copia retrotransposon family uncovers their recent amplification in Triticum aestivum (L.) genome. Ragupathy R; Banks T; Cloutier S Mol Genet Genomics; 2010 Mar; 283(3):255-71. PubMed ID: 20127492 [TBL] [Abstract][Full Text] [Related]
18. Amplification of the 1731 LTR retrotransposon in Drosophila melanogaster cultured cells: origin of neocopies and impact on the genome. Maisonhaute C; Ogereau D; Hua-Van A; Capy P Gene; 2007 May; 393(1-2):116-26. PubMed ID: 17382490 [TBL] [Abstract][Full Text] [Related]
19. GluDy allele variations in Aegilops tauschii and Triticum aestivum: implications for the origins of hexaploid wheats. Giles RJ; Brown TA Theor Appl Genet; 2006 May; 112(8):1563-72. PubMed ID: 16568284 [TBL] [Abstract][Full Text] [Related]
20. Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Bossolini E; Wicker T; Knobel PA; Keller B Plant J; 2007 Feb; 49(4):704-17. PubMed ID: 17270010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]